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Abstract 

Spiking Neural Networks (SNNs) are a type of 

neural network designed to replicate biological 

neural networks more closely by using discrete 

spikes to transmit information. Unlike traditional 

networks, SNNs incorporate time by relying on 

the precise timing of spikes for neuron-to-neuron 

communication. This reduces hardware 

complexity, as it only requires one-bit logic, 

making SNNs ideal for hardware integration. This 

study assesses the performance of several SNN 

models for hardware implementation, focusing on 

resource utilization, speed, and power 

consumption. Verilog was used for the hardware 

design, and the simulations were run in Vivado. 

The emulation experiments were conducted on the 

Basys3 FPGA board to validate our findings. Our 

analysis indicates that simpler models like Leaky 

Integrate and Fire (LIF) and Non-linear Integrate-

and-Fire (NLIF) are highly efficient, with low 

resource and power requirements, making them 

suitable for resource-constrained environments. 

More complex models like Hodgkin-Huxley (HH) 

and Izhikevich (IZH) provide detailed neuronal 

dynamics but at a higher resource cost. Our 

implementations exhibit notable improvements 

across several metrics compared to previous 

work. This analysis equips researchers with the 

necessary information to make informed 

decisions about which neuron model best meets 

their application needs, whether prioritizing 

speed, efficiency, or biological accuracy. 

Keywords: Spiking Neural Networks, Neuron 

Models, FPGAs, Verilog 

 

1. Introduction 

Spiking Neural Networks (SNNs) are designed to 

mimic the biological nervous system. In the brain, 

neurons communicate by sending trains of action 

potentials, known as spike trains. SNNs imitate 

this mechanism, so a neuron is only activated 

when a new input spike arrives. Additionally, 

SNNs are sensitive to the temporal characteristics 

of information transmission, which is an 

advantage over other neural networks (Maass, 

1997). However, the corresponding computation 

requirements increase as the SNN model becomes 

more complex. Customized hardware accelerators 

are required to achieve higher computing/power 

efficiency, especially for embedded and 

lightweight applications.  

SNNs are typically run on CPUs using software 

frameworks like Nest (Eppler et al. 2009), Brian  

(Stimberg et al. 2000), RAVSim (Sanaullah et al. 

2022), or on GPUs with frameworks like NEMO 

(Fidjeland et al. 2010), CNS (Mutch et al. 2010), 

NCS6 (Hoang et al. 2013), CARLsim 

(Niedermeier et al. 2022). However, these 

hardware platforms often consume a lot of power 

due to limited memory bandwidth, which also 

reduces their execution speed. To overcome these 

limitations, many researchers have developed 

custom ASICs (Application-Specific Integrated 

Circuits), such as IBM’s TrueNorth (Akopyan et 

al. 2015) and SpiNNaker (Furber et al. 2020), to 

boost performance and energy efficiency. Despite 

their advantages, ASICs can be inflexible, 

especially as neural network models evolve and 

new layers are introduced. Additionally, 

designing and producing large ASIC chips is both 

expensive and time-consuming, making it 

difficult to keep pace with rapid advancements in 
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the field. In situations where hardware resources 

are limited, FPGAs (Field-Programmable Gate 

Arrays) offer a flexible alternative, allowing 

different accelerators to be implemented on the 

same hardware block (Neil et al. 2014) (Wang et 

al. 2017) (Carpegna et al. 2022). However, the 

complexity of FPGA designs can make it 

challenging to deploy large networks, particularly 

in edge computing scenarios. 

This study evaluates the suitability of nine popular 

SNN models for hardware implementation. The 

models under examination are: Leaky Integrate-

and-Fire (LIF) (Gerstein et al. 1964), Non-linear 

Integrate-and-Fire (NLIF) (Jolivet et al. 2004), 

Integrate-and-Fire with Spike Frequency 

Adaptation (IF-SFA) (Gigante et al. 2007), 

Quadratic Integrate-and-Fire (QIF) (Brunel et al. 

2003), Adaptive Exponential (AdEx) (Brette et al. 

2005), Spike Response Model (SRM) (Gerstner 

2008), Theta Model (McKennoch et al. 2009), 

Hodgkin-Huxley (HH) (Häusser 2000), and 

Izhikevich Model (IZH) (Izhikevich 2004). Our 

evaluation is based on a comprehensive study by 

Sanaullah et al. (2023), which simulated these 

neuronal models on a CPU. We assessed each 

model in terms of resource utilization, operational 

speed, and power consumption. For the 

implementation and simulation of these SNN 

models, we utilized the Xilinx Vivado simulator 

and Verilog Hardware Description Language 

(HDL). Additionally, we conducted emulation 

experiments on the Basys3 FPGA development 

board to validate our findings. The remainder of 

the paper is organized as follows: Section 2 

reviews related works in the field of SNN 

implementations on FPGAs. Section 3 details the 

SNN models. Section 4 provides the hardware 

implementation. Section 5 provides a 

comprehensive evaluation of the models. Finally, 

Section 6 concludes the paper. 

2. Related works 

Neurons in the human brain vary in several ways, 

including the type of neurotransmitters they use, 

their morphological characteristics, and their 

spiking patterns. Despite these differences, they 

share a fundamental structure consisting of three 

main components: a dendritic tree (input 

channels), an axon (output mechanism), and a 

soma (core) (Gerstner et al. 2014). The dendrites 

and axons can be further divided into multiple 

segments through which signals travel, allowing 

for complex processing and communication 

across neural networks. Inspired by this biological 

structure of the neurons, neuromorphic hardware 

implementations of SNNs aim to replicate these 

dynamics. The LIF neuron is one of the simplest 

and most used neuron models. It is often 

implemented using an RC-parallel circuit (Dutta 

et al. 2017). The model considers the membrane 

as a leaky capacitance with a resistive element that 

causes the voltage to move towards a resting value 

when there is no input stimulation. Additionally, 

various modifications to the LIF model have been 

explored, such as the AdEx neuron model 

proposed by Heidarpour et al. (2016). This model 

integrates the potential difference exponentially in 

the current equation, mimicking the non-linear 

increase in action potential observed in biological 

neurons. Despite the higher implementation cost 

of non-linear behavior on hardware, the authors 

discretized the differential equations using the 

Euler method and implemented them on a Xilinx 

Spartan 6 FPGA using simple add and shift 

operations only. Similarly, Basham et al. (2012) 

introduce a QIF neuron model, where the current 

equation integrates the square of the potential 

difference. This design utilizes a fixed-point 

multiplier to evaluate the square of the voltage. 

Furthermore, Fang et al. (2019) proposed an 

FPGA-based SNN featuring biologically realistic 

neurons and synapses tailored for temporal 

information processing. Their model employs the 

LIF neuron and dynamic synapse model with 

three kernel types (Exponential, Alpha, and Dual 

exponential) alongside a hybrid encoding scheme 

combining population coding and temporal 

coding. Validation using the MNIST dataset 

reveals higher accuracy compared to previous 

works. A similar event-driven approach presented 

by Neil et al. (2014) for the IF model yielded 

lower accuracy, potentially attributed to 

overlooking synapse dynamics. Evaluation 

against CPUs, GPUs, and rate encoding using the 

Australian Sign Language dataset further 

demonstrates the superiority of the proposed 

hardware architecture and encoding scheme (Fang 

et al. 2019). 

Kumar et al. (2016) developed a spiking neuron 

model of the HH on an FPGA, leveraging a 

hardware architecture built upon a series of adder 

and multiplier blocks to execute the first-order 

differential equations in Verilog on Xilinx Virtex-

5. However, while representing each neuron 

parameter in fixed-point with chosen bit lengths, 

their justification for bit optimization strategies 

lacks consistency. The utilization of multiplier 
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blocks led to an increase in the number of Look-

Up Tables (LUTs) and, consequently, increased 

power consumption. Conversely, Shama et al. 

(2020) proposed a multiplier-less HH model 

aiming to overcome the computational 

complexity of the HH model, which involves 

numerous complicated equations requiring many 

multiplications. Their approach approximated 

hyperbolic functions as piece-wise linear terms, 

executing all multiply operations as logical shifts 

and additions. This was made feasible by 

modifying equations to power-2-based functions. 

Despite the high accuracy of the HH neuron, a 

multiplier-less design further reduced operational 

costs and increased frequency. Notably, their 

model achieved a 69% reduction in FPGA 

resources and a maximum processing frequency 

of 85 MHz, implemented on a Virtex-2 FPGA 

with fewer hardware resources compared to works 

using high-performance platforms such as Virtex-

7 and Artix-7. Bonabi et al. (2014) also presented 

a similar approach with a 58% reduction in FPGA 

resource usage. 

The impact of timestep on the performance and 

accuracy of the Izhikevich model was investigated 

by Heidarpur et al. (2020), who proposed a 

combined approach of software simulation and 

hardware implementation. By increasing the 

timestep to a threshold value, they observed 

dumped oscillations leading to neuron instability 

under different input currents. They validated 

their software simulation results by implementing 

a neuron model on FPGA to ensure stability. Their 

discussion highlighted that smaller timesteps 

require more system resources. Additionally, 

Alkabaa et al. (2022) evaluated a model based on 

its complexity and hardware resources required 

for FPGA realization, focusing on the two-neuron 

coupled Izhikevich model. Utilizing a LUT-based 

approach for quadratic equations instead of 

approximation techniques, they achieved closer 

alignment with mathematical equations as the 

LUT size increased.  

Another unique technique involving the 

Izhikevich neuron model is discussed by Karaca 

et al. (2021), where the authors explored its 

practical suitability for electrical realization due to 

its chaotic behavior. They compared a modified 

model version with the original coupled neuron 

dynamics through numerical simulations and 

FPGA demonstrations, noting a longer processing 

time but reduced utilization numbers without 

using multipliers. Furthermore, Niu et al. (2012) 

emulated motoneurons in the motor nervous 

system with the Izhikevich model on an FPGA to 

analyze pediatric neurological diseases, extending 

the application of these neuron models beyond. 

Koravuna et al. (2023) demonstrated a real-time 

FPGA implementation of an SNN for pattern 

recognition using IZH neurons. The hardware cost 

was reduced by implementing a multiplier-less 

approximation. 

3. Neuronal Models 
Neuronal models are essential tools in 

computational neuroscience, enabling researchers 

to simulate and analyze the complex dynamics of 

neural systems. SNNs are modeled using 

mathematical equations that describe the 

dynamics of spiking neurons, capturing 

parameters such as input current, membrane 

potential, and membrane time constants to mimic 

biological neurons' behavior. The choice of 

neuron model plays a significant role in 

determining the balance between computational 

efficiency and biological realism. Various SNN 

models utilize distinct mathematical frameworks 

to capture different neural characteristics, offering 

diverse perspectives on neural dynamics.  

This study investigates several key SNN models, 

including the LIF, NLIF, IF-SFA, QIF, AdEx, 

SRM, Theta, HH, and IZH. Each model represents 

a unique approach to simulating neuron behavior, 

enabling a comprehensive analysis of spiking 

neuron dynamics.  

3.1 LIF 

The LIF model is simple, yet it effectively 

represents neuron dynamics, capturing the 

membrane potential’s decay and input integration 

over time. The membrane potential dynamics is: 

𝜏
𝑑𝑉(𝑡)

𝑑𝑡
= −(𝑉(𝑡) − 𝑉𝑟) + (𝑅𝑚𝐼(𝑡))/𝑔𝑙          (1) 

Where: 

 𝑉(𝑡) is the membrane potential at time t. 

 𝑉𝑟 is the resting potential. 

 𝜏 = 𝑅𝑚. 𝐶𝑚 is the membrane time 

constant. 

 𝑅𝑚 is the membrane resistance. 

 𝐶𝑚 is the membrane capacitance. 

 𝐼(𝑡) is the input current. 

 𝑔𝑙 is the leak conductance. 

When the membrane potential reaches the 

threshold potential 𝑉𝑡ℎ (i.e., 𝑉(𝑡) ≥ 𝑉𝑡ℎ), a spike 

is emitted, and the membrane potential is reset to 
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the resting potential 𝑉𝑟𝑒𝑠𝑒𝑡. After the spike, the 

neuron enters a refractory period 𝑡𝑟𝑒𝑓, during 

which it is prevented from integrating input.  

3.2 NLIF 

The NLIF model is slightly more complex than 

the LIF neuron model. The mathematical equation 

is: 

𝜏
𝑑𝑉(𝑡)

𝑑𝑡
= −(𝑉(𝑡) − 𝑉𝑟) + (𝑅𝑚𝐼(𝑡))/𝑔𝑙

+ 𝑉(𝑡)2                                       (2) 

The additional 𝑉(𝑡)2 term introduces 

nonlinearity, capturing more complex membrane 

behavior. When 𝑉(𝑡) ≥ 𝑉𝑡ℎ, a spike occurs, and  

𝑉(𝑡) is reset, and the neuron enters the refractory 

period.  

3.3 IF-SFA 

The IF-SFA model captures spike-frequency 

adaptation, where the firing rate decreases over 

time when the neuron is stimulated with a constant 

current. This phenomenon is observed in many 

cortical neurons, making the IF-SFA model a 

good balance between simplicity and biological 

realism. Here is the mathematical representation: 

𝜏
𝑑𝑉(𝑡)

𝑑𝑡
= −(𝑉(𝑡) − 𝑉𝑟) +

𝑅𝑚𝐼(𝑡)

𝑔𝑙
+ 𝜔(𝑡)    (3) 

𝜏𝜔

𝑑𝜔(𝑡)

𝑑𝑡
= −𝜔(𝑡) + 𝑏. 𝛿(𝑡 − 𝑡𝑠𝑝𝑖𝑘𝑒)             (4) 

Where: 

 𝜔(𝑡) is the adaptation current. 

 𝜏𝜔 is the adaptation time constant. 

 𝛿(𝑡 − 𝑡𝑠𝑝𝑖𝑘𝑒) represents the spike-

triggered adaptation, where 𝑡𝑠𝑝𝑖𝑘𝑒 is the 

time of a spike. 

 𝑏 is the adaptation strength. 

When 𝑉(𝑡) ≥ 𝑉𝑡ℎ, a spike occurs, and  𝑉(𝑡) is 

reset. Also, the adaptation current is updated as  

𝜔(𝑡) = 𝜔(𝑡) + 𝑏. 

3.4 QIF 

The QIF model is nonlinear but can still be 

simulated efficiently compared to more complex 

models. It provides a more accurate description 

near the spike onset. It is represented as: 

𝜏
𝑑𝑉(𝑡)

𝑑𝑡
= −(𝑉(𝑡) − 𝑉𝑟) + √𝐶𝑚 √𝐼(𝑡)            (5) 

The model incorporates a quadratic voltage term 

near the firing threshold. When 𝑉(𝑡) ≥ 𝑉𝑡ℎ, a 

spike is emitted, followed by a refractory period, 

and the membrane potential remains at the reset 

potential.  

3.5 AdEx 

The AdEx model combines adaptive dynamics 

and nonlinear spike generation, providing realistic 

neuron behavior, including spike-frequency 

adaptation.  The mathematical equations are: 

𝜏
𝑑𝑉(𝑡)

𝑑𝑡
= −(𝑉(𝑡) − 𝑉𝑟) + 𝐼(𝑡) + 𝜔(𝑡)

+ ∆𝑇 exp (
𝑉(𝑡) − 𝑉𝑡ℎ

∆𝑇
)          (6) 

𝜏𝜔

𝑑𝜔(𝑡)

𝑑𝑡
= 𝑎𝑉(𝑡) − 𝜔(𝑡)                               (7) 

Where, 𝑎  represents the subthreshold adaptation 

conductance and ∆𝑇 is the slope factor. When 

𝑉(𝑡) ≥  𝑉𝑡ℎ, a spike occurs, 𝑉 and 𝜔 are updated 

similarly to IF-SFA. AdEx strikes a balance 

between simplicity and biological realism, 

offering more accurate adaptation dynamics.   

3.6 SRM  

SRM models are efficient and capture both 

synaptic dynamics and spike-based interactions. It 

is realized with these differential equations: 

𝜏
𝑑𝑉(𝑡)

𝑑𝑡
= −𝑉(𝑡) + 𝐼(𝑡) + 𝜂(𝑡) + 𝜖(𝑡)           (8) 

𝜂(𝑡) = 𝜂0𝑒𝑥𝑝
−

𝑡
𝜏𝜂                                                    (9) 

𝜖(𝑡) = 𝜖0𝑒𝑥𝑝
−

𝑡
𝜏𝜖                                                   (10) 

Where: 

 𝜂(𝑡) is the response to the neuron's past 

spikes. 

 𝜖(𝑡) is the postsynaptic response to 

incoming spikes from other neurons. 

 𝜂0 is the initial amplitude of the refractory 

effect. 

 𝜏𝜂 is the time constant that controls the 

refractory kernel's decay rate. 

 𝜖0 is the initial amplitude of the 

postsynaptic response. 

 𝜏𝜖 is the time constant for postsynaptic 

decay. 

When 𝑉(𝑡) ≥ 𝑉𝑡ℎ , a spike occurs, and 𝑉(𝑡) is 

reset, the refractory kernel is updated as 𝜂(𝑡) =
𝜂(𝑡) + 𝜂𝑠𝑝𝑖𝑘𝑒 , where 𝜂𝑠𝑝𝑖𝑘𝑒 is the spike-triggered 
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increment added to the kernel immediately after 

the spike, and the synaptic kernel is updated as 

𝜖(𝑡) = 𝜖(𝑡) + 𝜖𝑠𝑝𝑖𝑘𝑒, where 𝜖𝑠𝑝𝑖𝑘𝑒 is the 

magnitude of the postsynaptic response to the 

incoming spike. 

3.7. Theta 

The Theta model is commonly used in phase-

oscillator models and captures rhythmic spiking 

activity. The model is ideal for analyzing neuronal 

phase dynamics and synchronization. The 

mathematical representation is:  

𝜏
𝑑𝑉(𝑡)

𝑑𝑡
= −(𝑉(𝑡) − 𝑉𝑟) + 𝑔(𝜃 − 𝑉(𝑡))

+ 𝐼(𝑡)                                      (11)  

Where, 𝑔 is the input conductance and 𝜃 is the 

threshold. When 𝑉(𝑡) ≥  𝜃, a spike occurs, and 

𝑉(𝑡) is reset. 

3.8 HH 

Based on the original experiments with the squid 

axon [Schwiening 2012], the HH model is one of 

the most biologically accurate descriptions of 

action potential generation. The differential 

equations are: 

𝐶𝑚

𝑑𝑉(𝑡)

𝑑𝑡
= 𝐼(𝑡) + 𝐼𝑁𝑎 + 𝐼𝐾 + 𝐼𝑙                    (12) 

𝐼𝑁𝑎 = 𝑔𝑁𝑎𝑚3ℎ(𝑉(𝑡) − 𝐸𝑁𝑎)                           (13) 

𝐼𝐾 = 𝑔𝐾𝑛4(𝑉(𝑡) − 𝐸𝐾)                                      (14) 

𝐼𝑙 = 𝑔𝑙(𝑉(𝑡) − 𝐸𝑙)                                              (15) 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛𝑉(𝑡)(1 − 𝑛) − 𝛽𝑛𝑉(𝑡)𝑛                    (16) 

𝑑𝑚

𝑑𝑡
= 𝛼𝑚𝑉(𝑡)(1 − 𝑚) − 𝛽𝑚𝑉(𝑡)𝑚              (17) 

𝑑ℎ

𝑑𝑡
= 𝛼ℎ𝑉(𝑡)(1 − ℎ) − 𝛽ℎ𝑉(𝑡)ℎ                  (18) 

Where: 

 𝐼𝑁𝑎, 𝐼𝐾 & 𝐼𝑙   are Sodium, Potassium, and leak 

currents, respectively. 

 𝑔𝑁𝑎, 𝑔𝐾 & 𝑔𝑙  represent the maximum 

conductance of the ion channels. 

 𝑚, 𝑛 𝑎𝑛𝑑 ℎ are the gating variables. 

 𝐸𝑁𝑎 , 𝐸𝐾 𝑎𝑛𝑑 𝐸𝑙 are the reversal potentials of 

the ion channels. 

 𝛼𝑛(𝑉(𝑡)),  𝛼𝑚(𝑉(𝑡)), 𝛼ℎ(𝑉(𝑡)), 𝛽𝑛(𝑉(𝑡)),
𝛽𝑚(𝑉(𝑡)), 𝑎𝑛𝑑 𝛽ℎ(𝑉(𝑡) represent the rate 

functions to control the opening and closing 

of ion channels. 

When 𝑉(𝑡) ≥ 𝑉𝑡ℎ, a spike occurs, and  𝑉(𝑡) 

is reset, and the gating variables  𝑚, 𝑛 𝑎𝑛𝑑 ℎ 

are also updated based on the rate functions. 
The model is computationally expensive because 

it requires solving multiple nonlinear differential 

equations.  

3.9 IZH 

The Izhikevich model is known for its flexibility, 

which is capable of reproducing various firing 

patterns observed in biological neurons, from 

regular spiking to bursting. The model balances 

biological realism with computational efficiency, 

suitable for large network simulations. The 

neuronal dynamics are given as follows: 
𝑑𝑉(𝑡)

𝑑𝑡
= 0.04𝑉(𝑡)2 + 5𝑉(𝑡) + 140 − 𝑈(𝑡)

+ 𝐼(𝑡)                                       (19) 

𝑑𝑈(𝑡)

𝑑𝑡
= 𝑎(𝑏𝑉(𝑡) − 𝑈(𝑡))                               (20) 

Where: 

 𝑈(𝑡) is the recovery variable, which 

provides adaptation. 

 𝑎, 𝑎𝑛𝑑 𝑏 are model parameters.  

When 𝑉(𝑡)  ≥ 30 𝑚𝑉, a spike is emitted, and 

𝑉(𝑡)𝑎𝑛𝑑 𝑈(𝑡) are reset: 𝑉(𝑡) = 𝑐, 𝑈(𝑡) =
𝑈(𝑡) + 𝑑, where 𝑐 𝑎𝑛𝑑 𝑑 are dimensionless 

variables. 

 

Understanding the variety of neuron models 

available is crucial for selecting the appropriate 

model depending on the research objectives and 

computational constraints. The models covered in 

this paper—from the LIF and NLIF models to 

more complex frameworks like the HH model—

represent key milestones in neural modeling. Each 

model offers distinct trade-offs between 

simplicity, biological accuracy, and 

computational demands. 

 

4. Hardware Implementation 

This study aims to implement and emulate 

biologically inspired neuronal models on an 

FPGA, taking advantage of the parallelism and 

speed offered by hardware design. The model 

designs were synthesized for the Basys3 FPGA, 
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which uses a Xilinx Artix-7 device. The FPGA 

implementation allows real-time emulation of 

neurons, making it suitable for large-scale parallel 

simulation.  

Several design considerations were made to 

efficiently implement the hardware-friendly 

neuronal models. The neuronal models use fixed-

point arithmetic to reduce hardware complexity 

and resource utilization. This choice allows the 

FPGA to compute neuron dynamics efficiently 

without requiring floating-point units. The design 

uses a finite state machine (FSM) to manage the 

different states of the neuron (e.g., idle and firing). 

This approach simplifies the control logic and 

ensures accurate spike generation. The model 

parameters, such as membrane resistance, 

threshold potential, and time constants, are all 

configurable using Verilog parameters. This 

flexibility makes it easy to adapt the model to 

different biological scenarios. The designs were 

optimized by minimizing the use of multipliers 

and divisions and leveraging shift operations for 

the multiplication and division operations, as 

these operations in digital design can be 

particularly costly in terms of timing and resource 

usage.  

Adapted Models 

LIF 

The design parameters are adapted as follows: 

𝜏 = 2𝜏𝑠 , 𝑅𝑚 = 2𝑅𝑚𝑠 , 𝑎𝑛𝑑 𝑔𝑙 = 2𝑔𝑙𝑠 

The approximated mathematical model for 

FPGA implementation: 

𝑉(𝑡) = (−𝑉(𝑡 − 1) + 𝑉𝑟 + (𝐼(𝑡)
≪ 𝑅𝑚𝑠) ≫ 𝑔𝑙𝑠) ≫ 𝜏𝑠            (21) 

NLIF 

The design parameters are adjusted as follows: 

𝜏 = 2𝜏𝑠 , 𝑅𝑚 = 2𝑅𝑚𝑠 , 𝑎𝑛𝑑 𝑔𝑙 = 2𝑔𝑙𝑠 

The mathematical model realized is: 

𝑉(𝑡) = (−𝑉(𝑡 − 1) + 𝑉𝑟 + (𝐼(𝑡) ≪ 𝑅𝑚𝑠)
≫ 𝑔𝑙𝑠 + 𝑉(𝑡 − 1)2) ≫ 𝜏𝑠    (22) 

IF-SFA 

 The design specifications are modeled as 

follows: 

𝜏 = 2𝜏𝑠 , 𝜏𝜔 = 2𝜏𝜔𝑠 , 𝑅𝑚 = 2𝑅𝑚𝑠 ,
𝑏 = 2𝑏𝑠 𝑎𝑛𝑑 𝑔𝑙 = 2𝑔𝑙𝑠 

The derived mathematical model for hardware 

implementation is: 

𝑉(𝑡) = (−𝑉(𝑡 − 1) + 𝑉𝑟 + (𝐼(𝑡) ≪ 𝑅𝑚𝑠)

≫ 𝑔𝑙𝑠 + 𝜔(𝑡)) ≫ 𝜏𝑠             (23) 

𝜔(𝑡) = (−𝜔(𝑡 − 1) + 𝛿(𝑡 − 𝑡𝑠𝑝𝑖𝑘𝑒) ≪ 𝑏𝑠)

≫ 𝜏𝜔𝑠                                       (24) 

QIF 

The design constraints have been redefined as 

follows: 

𝜏 = 2𝜏𝑠 ,  𝑎𝑛𝑑 𝐶𝑚 = 2𝐶𝑚𝑠 

The simplified mathematical model for FPGA 

deployment is: 

𝑉(𝑡) = (−𝑉(𝑡 − 1)2 + 𝑉𝑟 + (𝐼(𝑡) ≪ 𝐶𝑚𝑠))
≫ 𝜏𝑠                                          (25) 

AdEx 

The design parameters are reconfigured as: 

𝜏 = 2𝜏𝑠 ,  𝜏𝜔 = 2𝜏𝜔𝑠 , 𝑎 = 2𝑎𝑠 , 𝑎𝑛𝑑 ∆𝑇= 2∆𝑇𝑠 

The revised mathematical model is: 

𝑉(𝑡) = (−𝑉(𝑡 − 1) + 𝑉𝑟 + 𝐼(𝑡) + 𝜔(𝑡)
+ (((𝑉(𝑡 − 1) − 𝑉𝑡ℎ) ≪ ∆𝑇𝑠)
+ 1) ≪ ∆𝑇𝑠) ≫ 𝜏𝑠           (26) 

𝜔(𝑡) = (𝑉(𝑡 − 1) ≪ 𝑎𝑠 − 𝜔(𝑡 − 1))
≫ 𝜏𝜔𝑠                                    (27) 

SRM 

The following updates have been made to the 

design parameters: 

𝜏 = 2𝜏𝑠 , 𝜏𝜂 = 2𝜂𝑠 ,  𝑎𝑛𝑑 𝜏𝜖 = 2𝜖𝑠 

The optimized mathematical model is: 

𝑉(𝑡) = (−𝑉(𝑡 − 1) + 𝐼(𝑡) + 𝜂(𝑡) + 𝜖(𝑡))
≫ 𝜏𝑠                                          (28) 

𝜂(𝑡) = 𝜂(𝑡 − 1) − (𝜂(𝑡 − 1) ≫ 𝜂𝑠)              (29) 

𝜖(𝑡) = 𝜖(𝑡 − 1) − (𝜖(𝑡 − 1) ≫ 𝜖𝑠)               (30) 

Theta 

The design parameters are updated as follows: 

𝜏 = 2𝜏𝑠  𝑎𝑛𝑑 𝑔 = 2𝑔𝑠 

The computed mathematical model is: 
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𝑉(𝑡) = (−(𝑉(𝑡 − 1) − 𝑉𝑟) + (𝜃 − 𝑉(𝑡 − 1))

≪ 𝑔𝑠 + 𝐼(𝑡)) ≫ 𝜏𝑠                (31) 

HH 

The design parameters are adapted as follows: 

𝐶𝑚 = 2𝐶𝑚𝑠,     𝑔𝑁𝑎 = 2𝑔𝑁𝑎_𝑠 ,    𝑔𝐾 = 2𝑔𝐾_𝑠 ,
𝑎𝑛𝑑  𝑔𝑙 = 2𝑔𝑙_𝑠 

The approximated mathematical model is: 

𝑉(𝑡) = (𝐼(𝑡) + 𝐼𝑁𝑎 + 𝐼𝑘 + 𝐼𝑙) ≫ 𝐶𝑚𝑠            (32) 

𝐼𝑁𝑎 = (𝑚3(𝑉(𝑡 − 1) − 𝐸𝑁𝑎)ℎ) ≪ 𝑔𝑁𝑎_𝑠      (33) 

𝐼𝑁𝑎 = (𝑛4(𝑉(𝑡 − 1) − 𝐸𝐾)) ≪ 𝑔𝐾_𝑠              (34) 

𝐼𝑙 = (𝑉(𝑡 − 1) − 𝐸𝑙) ≪ 𝑔𝑙_𝑠                             (35) 

IZH 

The design parameters are set as follows: 

𝑎 = 2𝑎𝑠  𝑎𝑛𝑑 𝑏 = 2𝑏𝑠  

The simplified mathematical model for hardware 

implementation is: 

𝑉(𝑡) = 2𝑉(𝑡) + 4𝑉(𝑡) + (𝑉(𝑡)2

≫ 4) + 140 − 𝑈(𝑡) + 𝐼(𝑡) (36) 

𝑈(𝑡) = ((𝑉(𝑡) ≪ 𝑎𝑠) − 𝑈(𝑡)) ≪ 𝑏𝑠              (37) 

5. Results and Discussion 

This section presents and analyzes the results 

from the hardware emulation of various neuronal 

models on the Basys3 FPGA platform. We begin 

by discussing the neuronal parameters used and 

their spiking activities. Then, we evaluate the 

models based on key metrics such as resource 

utilization, power consumption, and performance, 

focusing on their operating frequencies. 

5.1 Spiking Activity 

The spiking activities of different neuronal 

models were visualized over time during the 

simulation. Figure 1 illustrates the spiking 

patterns of each model in response to an input 

current pulse. The parameter values used for this 

comparison are listed to highlight the differences 

in spiking behavior across the models. A constant 

input current was applied simultaneously to all 

models. As the input is integrated by each model, 

the membrane potentials increase. When a 

model's membrane potential reaches a predefined 

threshold, it generates a spike and the potential 

resets to its resting value. After each spike, a brief 

refractory period occurs, during which the neuron 

is temporarily inactive before it can spike again. 

The spiking patterns, response times, and spike 

counts vary between models due to their unique 

dynamics and parameter configurations. The 

comparison in Figure 1 demonstrates how each 

neuron model responds to the same input current 

(I(t) = 50), revealing significant differences in 

their behavior. 

 

Figure 1: Spiking activity of different SNN 

models in response to an input current pulse. 

Parameters: 

LIF: 𝜏 = 8, 𝑉𝑡ℎ = −64, 𝑅𝑚 = 8, 𝑔𝑙 = 8,  

𝑉0 = −64 (initial potential),  𝑉𝑟𝑒𝑠𝑒𝑡 = −70,
𝑉𝑟 = 0. 

NLIF: 𝜏 = 8, 𝑉𝑡ℎ = −64, 𝑅𝑚 = 8, 𝑔𝑙 = 8,  

𝑉0 = −64 ,  𝑉𝑟𝑒𝑠𝑒𝑡 = −70,  𝑉𝑟 = 0. 

IF-SFA: 𝜏 = 8, 𝑉𝑡ℎ = −64,  𝑅𝑚 = 8,  𝑔𝑙 = 8,
𝑉0 = −64,  𝑉𝑟𝑒𝑠𝑒𝑡 = −70, 𝑏 = 8, 𝜏𝜔 = 8. 

QIF:  𝜏 = 8, 𝑉𝑡ℎ = −64, 𝐶𝑚 = 8, 𝑉0 = −64,  

𝑉𝑟𝑒𝑠𝑒𝑡 = −70. 

AdEx:  𝜏 = 8, 𝑉𝑡ℎ = −64, 𝜏𝜔 = 8 , 𝑎 = 4,  
𝑉0 = −64,  𝑉𝑟𝑒𝑠𝑒𝑡 = −70, ∆𝑇= 8. 

SRM: 𝜏 = 3, 𝑉𝑡ℎ = −64, 𝜖(𝑡) = 8 , 
 𝜖𝑠𝑝𝑖𝑘𝑒 = 5, 𝑉0 = −64,  𝑉𝑟𝑒𝑠𝑒𝑡 = −70, 𝜂(𝑡) =

8, 𝜂𝑠𝑝𝑖𝑘𝑒 = 10. 

Theta: 𝜏 = 8, 𝑉𝑡ℎ = −64, 𝑉0 = −64,  𝑔 = 8,
𝑉𝑟𝑒𝑠𝑒𝑡 = −70. 

HH: 𝑉𝑡ℎ = 50, 𝑔𝑙 = 3, 𝑉𝑟𝑒𝑠𝑒𝑡 = 0,  𝐶𝑚 = 10,
𝑔𝑁𝑎 = 120,   𝑔𝐾 = 36,    𝐸𝐾 = −82,    𝐸𝑙 = −84,
𝐸𝑁𝑎 = 50. 

IZH: 𝑉𝑡ℎ = 30, 𝑎 = 2, 𝑏 = 16, 𝑐 = −65, 
 𝑑 = 8, 𝑉0 = 0. 

5.2 Performance Analysis 

Table 1 shows the FPGA's performance analysis 

based on resource usage in terms of LUTs, Flip-

Flops (FFs), and DSP blocks for each neuronal 
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model, the power consumption and maximum 

operational frequency. 

Resource Utilization 

The resource utilization results show that the LIF 

and NLIF models exhibit the most efficient use 

of hardware resources, with 13 and 12 LUTs, 

respectively, and both require only 17 FFs. This 

minimal use of resources reflects the simplicity of 

these models, which focus on basic integration 

and threshold dynamics without complex 

biological features. The IF-SFA model, which 

introduces adaptation mechanisms into the basic 

IF model, requires comparatively more resources, 

utilizing 38 LUTs and 30 FFs. The adaptation 

mechanism likely accounts for this increase in 

complexity, as the model needs additional logic to 

adjust the neuron's response to previous firing 

activity. This makes the IF-SFA more biologically 

realistic but with a noticeable rise in hardware cost 

compared to the basic LIF and NLIF. Similarly, 

the Theta model shows moderate hardware 

resource utilization offering a good middle ground 

between biological realism and computational 

efficiency 

The QIF model, designed to capture more 

intricate neuronal firing patterns by incorporating 

quadratic terms, is among one of the most 

resource-heavy, utilizing 82 LUTs and 21 FFs. 

This indicates a significant jump in complexity as 

compared to simpler models. Similarly, AdEx (48 

LUTs and 29 FFs), and SRM (65 LUTs and 45 

FFs), represent biologically detailed models that 

aim to capture various neuron dynamics. For 

instance, the AdEx model introduces exponential 

spike generation, while SRM models the neuron’s 

response to input spikes based on synaptic 

kernels.  

DSP Blocks are only used by two neuron models. 

HH consumes 3 DSP blocks, and the IZH model 

uses 1 DSP block. DSP blocks are typically 

employed to perform complex arithmetic 

operations efficiently. The HH model, known for 

simulating ion channel dynamics using 

differential equations, requires dedicated DSP 

resources for the continuous, time-dependent 

processes involved. The IZH model, while 

offering a good trade-off between biological 

accuracy and computational simplicity, requires 

some DSP support, likely due to its ability to 

simulate both regular spiking and bursting 

patterns using more advanced mathematical 

functions. 

Table 1: FPGA performance analysis 

Neuron LUT FF DSP 
Power 

(W) 

Max. 

Frequency 

(MHz) 

LIF 13 17 - 0.092 450 

NLIF 12 17 - 0.096 450 

IF-SFA 38 30 - 0.103 270 

QIF 82 21 - 0.085 148 

AdEx 48 29 - 0.093 189 

SRM 65 45 - 0.099 239 

Theta 30 21 - 0.099 236 

HH 73 50 3 0.105 115 

IZH 42 25 1 0.099 130 

Power Consumption  

Power consumption is an important metric, 

especially in applications where energy efficiency 

is critical, such as mobile or embedded 

neuromorphic systems. Across all models, the 

power consumption is relatively consistent, 

ranging from 0.085 W to 0.105 W. LIF and NLIF 

have moderate power consumption at around 

0.092 W and 0.096 W, respectively balancing 

simplicity with computational needs. This slight 

increase compared to QIF is due to their higher 

operating frequencies. The models, such as AdEx, 

SRM, Theta, and Izhikevich, consume between 

0.093 W to 0.105 W, reflecting their more 

complex dynamics that require additional logic to 

maintain, particularly in cases where exponential 

terms, adaptation, or other biologically plausible 

features are simulated. The IF-SFA model 

consumes 0.103 W of power; this increase in 

power usage is due to the additional logic required 

for the adaptation mechanism, which tracks the 

neuron’s firing history and adjusts the membrane 

potential accordingly. The HH model, at 0.105 W, 

consumes the most power, reflecting its 

computational complexity and the requirement for 

DSP blocks.  

Operating Frequency 

Maximum operating frequency is another critical 

performance parameter, especially in time-

sensitive neuromorphic applications that demand 

fast real-time processing. The LIF and NLIF 

models achieve the highest maximum frequency, 

operating at 450 MHz, which makes them ideal 

for high-speed, low-latency neural simulations. 

This high performance can be attributed to their 

simplicity, which allows for faster propagation of 
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signals through the hardware without significant 

delays caused by complex operations. Models like 

IF-SFA (270 MHz), AdEx (189 MHz), SRM 

(239 MHz), and Theta (236 MHz) achieve 

relatively high frequencies, although lower than 

LIF and NLIF. These intermediate operating 

frequencies reflect the additional processing 

required for spike-frequency adaptation, synaptic 

kernels, or more detailed voltage dynamics. 

Despite these complexities, they remain suitable 

for real-time applications where moderately high-

speed processing is sufficient. On the lower end, 

models such as QIF (148 MHz), HH (115 MHz), 

and Izhikevich (130 MHz) operate at much lower 

frequencies, with the HH model being the 

slowest. This significant drop in frequency is due 

to the increased computational load from more 

complex mathematical operations and the 

continuous nature of the neuronal dynamics. 

These models may struggle in scenarios requiring 

high-speed, real-time simulations but offer much 

greater biological realism, making them more 

suitable for tasks where accuracy is prioritized 

over speed. 

Table 2 shows the performance metrics of 

previous work for the available implementations 

on FPGAs. Our implementations exhibit notable 

improvements across several metrics compared to 

previous work. Our LIF model, with 13 LUTs and 

17 FFs, consumes 0.092 W and achieves a 

maximum frequency of 450 MHz, significantly 

higher than Fan et al. (2022), who used 593 LUTs, 

63 FFs, and achieved 83 MHz at 0.142 W. 

Similarly, our QIF model, using 82 LUTs and 21 

FFs, consumes 0.085 W and operates at 148 MHz, 

significantly improving upon the 86 LUTs and 41 

FFs reported by Bashram et al. (2012), which only 

achieved 12 MHz. The AdEx model, with 48 

LUTs and 29 FFs, achieves 189 MHz while 

consuming 0.093 W, compared to the 472 LUTs 

and 185 FFs of Wang et al. (2022) at 212 MHz. 

Our IZH model uses 42 LUTs and 25 FFs, 

consumes 0.099 W, and runs at 130 MHz, an 

improvement in resource efficiency compared to 

Yang et al. (2020), who used 119 LUTs and 130 

FFs but with a lower frequency of 291.8 MHz. 

These improvements demonstrate the efficiency 

and scalability of our models compared to prior 

work. 

 

 

Table 2: Performance metrics of previous work 

Work 

Neuron 

 

Resources  

(LUTs, 

FFs,  

DSPs) 

FPGA 

Power 

(W) 

Max 

Frequency 

(MHz) 

Carpegna 

et al. 

(2022) 

LIF 

62, 40, - 

Artix-7 

- - 

Fan et al. 

(2022) 

LIF 

593, 63, - 

Cyclone-4 

0.142 83 

Basham et 

al. (2012) 

QIF 

84, 41, - 

Spartan 3 

0.034 12 

Muñoz et 

al. (2012) 

SRM 

378, 202, - 

Spartan 3 

- - 

Wang et 

al. (2022) 

AdEX 

472, 185, - 

Virtex II 

- 212 

Yang et al. 

(2020) 

IZH  

119, 130, - 

ZCU102 

- 291.8 

Our Best Models – Basys3- Artix 7  

LIF 13, 17, - 0.092 450 

NLIF 12, 17, - 

 

0.096 

 

450 

6. Conclusion 

This study focused on implementing and 

evaluating various neuronal models on FPGA to 

assess their suitability for real-time hardware 

emulation. We successfully deployed and tested 

the LIF, NLIF, IF-SFA, QIF, AdEx, SRM, Theta, 

HH, and IZH models on the Basys3 FPGA board, 

examining their resource utilization, power 

consumption, and their maximum operating 

frequency. Our results demonstrate that simpler 

models like LIF and NLIF offer high efficiency in 

terms of hardware resource utilization and power 

consumption while achieving the highest 

operating frequencies. Their minimal resource 

requirements make them highly suitable for real-

time, high-speed applications where large-scale 

simulations or low-latency processing are critical. 

Intermediate complexity models, including IF-

SFA, AdEx, SRM, and Theta, offer a balanced 

approach between biological realism and 

operational efficiency. These models require more 

resources and exhibit lower frequencies than 

simpler models, but they provide enhanced 

dynamical features and adaptation mechanisms, 

making them appropriate for applications where a 
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compromise between accuracy and performance 

is acceptable. Complex neuron models such as 

QIF, HH, and IZH, although more resource-

intensive and slower, offer significant 

improvements in simulating neuronal behavior. 

Specifically, HH and IZH are more biologically 

realistic models. These models, with their higher 

computational demands and lower frequencies, 

are best suited for applications where the accuracy 

of biological dynamics is paramount, such as 

detailed neural simulations or advanced brain 

modeling. Overall, this work contributes valuable 

insights into the trade-offs between computational 

complexity, resource utilization, and performance 

in FPGA-based neuronal emulations. 
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