
A Hybrid Agent-Oriented Stochastic Diffusion

Search and Beam Search Architecture

Sithembiso Dyubele and Duncan Anthony Coulter

University of Johannesburg

Johannesburg, South Africa

ctheradyubele@gmail.com, dcoulter@uj.ac.za

Abstract

Various swarm intelligence-based algorithms

have been developed and explored over the years.

These algorithms include particle swarm

optimisation, spider monkey optimisation,

artificial bee colony algorithm, ant colony

optimisation, and bacterial foraging optimisation,

among many others. However, according to the

reviewed literature, classical or traditional

optimisation methods are confronted with

difficulties when scaling up to real-world

optimisation problems; therefore, there is a need

to develop efficient and robust computational

algorithms that can solve problems numerically,

irrespective of their sizes. Inspired by nature-

inspired swarm intelligence algorithms, this study

has created a hybrid-based algorithm utilising

Stochastic Diffusion Search (SDS) and Beam

Search algorithms. In this model, SDS is

incorporated because of its ability to operate as a

multi-agent population-based global search and

optimisation algorithm. The Beam Agent (BA) is

utilised to initialise, update, and maintain a list of

candidate regions in the search space. In addition,

it is responsible for recruiting agents for those

regions in the search space. A variation of the

knapsack problem was employed to test the

created hybrid model. In this problem, constraints

were established, as discussed later in the paper

(in section 3.5). The results discussed in section 4

indicated that the algorithm found a better

solution in the search space. The results also

showed a strong and consistent beam after a series

of iterations during the simulation. The specific

improvements observed with the hybrid algorithm

are that, because it is implemented as an actor-

oriented system, it is completely parallelised,

every actor is independent of every other actor and

can be run automatically, on its own individual

green thread but can, in fact, be run on another

computer. This parallelisability, composability,

and the resulting distributable nature of the new

algorithm are the main advantages over the

standard implementation of either stochastic

diffusion search or beam search, neither of which

are parallelised by default. Its implication is based

on the fact that the pace of improvement in

available computing power has levelled off

following several decades of sustained growth

characterised by Moore's law. The hybrid

algorithm is highly parallelisable, making it easy

to take advantage of multiple cores on a single

computer or multiple machine instances in a cloud

computing scenario. Therefore, this is a modern

version of both component algorithms within the

proposed hybrid approach as it translates better

into environments where it is easier to scale

outwards rather than upwards.

Keywords: Swarm Intelligence, Stochastic

Diffusion Search, and Beam Agent

1. Introduction

Osaba, Del Ser, Jubeto, Iglesias, Fister, Gálvez, &

Fister (2020) revealed that Stochastic Diffusion

Search (SDS) was established in 1989 as a

population-based pattern-matching method.

Similarly, Martin, Bishop, Robinson, & Myatt

(2019) claim that SDS is a novel probabilistic

technique utilised to recognise and match the best

fit. Kamaraj, Lanitha, Karthic, Prakash, and

Mahaveerakannan (2023) indicated that SDS with

the mathematical foundation is used to describe

the algorithm behaviour by linear time

complexity, convergence criteria to their

minimum, stoutness, convergence at global

optimum level, and resource assignment. Martin

et al. (2019) alluded that agents collectively

construct the solution by performing independent

searches followed by the diffusion of information

through the population. According to

Maroufpoor, Azadnia, & Bozorg-Haddad (2020)

and Osaba et al. (2020), SDS can be utilised to

address optimisation-related problems even where

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 214 of 270

sameerchand.pudaruth@gmail.com
Typewritten text
https://doi.org/10.59200/ICONIC.2024.023

the objective can be divided into different

components that can be examined separately. Al-

Rifaie & Bishop (2020) indicated that various

sectors have been leveraging the swarm

intelligence-based algorithm known as Stochastic

Diffusion Search (SDS) to solve many issues,

including optimisation-related problems. Tair,

Bacanin, Zivkovic, & Venkatachalam (2022)

described optimisation as a process which aims to

discover a solution that is either optimum or near-

to-optimal based on the stated goals and given

constraints. Researchers have shown interest in

developing a robust and simpler architecture of

nature-inspired swarm intelligence algorithms,

especially in complex search spaces, to solve

optimisation-related problems (Rifaie & Bishop,

2020). This study created a hybrid actor-oriented

algorithm utilising both the Stochastic Diffusion

Search (SDS) and Beam Search algorithms. The

model accelerates the exploration property of the

search space by the agents. All agents report their

data to the controller agent. The controller agent

evaluates all the results (statistics received from

the agents while exploring the search

environment), analyses them, and decides which

cluster has the best quality.

1.1 The motivation behind the use of

Stochastic Diffusion Search (SDS) and

Beam Search algorithms

Stochastic Diffusion Search (SDS) is inherently

agent oriented. While it has been previously

implemented as an actor system, it is certainly not

well explored. Its combination with Beam Search

is accomplished through a local search using an

ordered list of candidate regions to explore.

Similarly, SDS has a pool of inactive agents that

need to be recruited to potentially profitable

regions of the search space. In the standard

algorithm, they are recruited randomly with no

knowledge of the topology of the search space.

The proposed hybrid algorithm brings in

knowledge of potentially good regions of the

search space and stores it in the Beam data

structure. The goal is to make search space

exploration more effective through a more robust

recruitment mechanism and to make the

architecture of such systems more modular,

composable, and distributable.

1.2 Statement of the problem

This study looks at the problem statement from a

modular distributed AI point of view. It is based

on the fact that modern AI systems have to be

highly distributed, which taps into the advantages

of cloud computing. However, many algorithms

have been developed over the years without an

eye towards being composable, modular,

distributable systems; therefore, this study is

motivated to try and find ways of creating such

distributable and composable AI algorithms.

1.3 The research gap

The gap this current study seeks to address is the

non-distributable nature of the normally used

algorithm. No previous work has been identified

combining Beam Search and Stochastic Diffusion

Search as an actor system from the existing

literature. The novelty of this study is not only

based on the parallelism mentioned previously but

also on intrinsic similarities between SDS and

Beam Search. Both algorithms manage the

exploration recruitment within the search space,

with Beam Search providing a more nuanced

mechanism for doing so for SDS.

2. Literature Review

Noisy environments and incomplete data are often

at the heart of complex, real-world search and

optimisation-related problems, generating input

that established search heuristics sometimes have

difficulty dealing with (Rifaie & Bishop, 2020).

Similarly, Tair et al. (2022) revealed that since the

turn of the century, there have been optimisation

issues in both combinatorial and global

optimisation. Over the years, many models have

been developed to address these challenges with

algorithms such as population-based stochastic

metaheuristics. Tair et al. (2022) further indicated

optimisation issues have been observed in many

machine learning models. Goel, Neog, Aman, &

Kaur (2020) revealed that many algorithms have

been developed to address these problems;

however, there is a need to develop more and

better models to improve the results. Some meta-

heuristic global optimisation algorithms include

the harmony search algorithm, Stochastic

Diffusion Search (SDS), Particle Swarm

Optimisation (PSO), etc.

2.1 Stochastic Diffusion Search

Suganya and Rajan (2021) stated that agents in the

population contest for direct communication

patterns like cooperative transport, which is

present in social insects when performing

evaluations of search space. However, according

to Maroufpoor et al. (2020) and Martin (2021), for

SDS, the hypothesis regarding potential solutions

concerning the agent population is partially to

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 215 of 270

offer feedback that ensures the convergence of

agents on a promising solution. Similarly, Osaba

et al. (2020) conducted a study that gravitates on

a heterogeneous Swarm Robotics system that

utilise SDS as the coordination heuristics for the

exploration, location and delimitation of areas

scattered over the area where robots are deployed.

Likewise, the reviewed literature revealed that a

gradient boost-modified classifier with Particle

Swarm Optimisation (PSO) and Stochastic

Diffusion Search method for data optimisation in

wireless sensor networks could be developed,

with the results demonstrating the model's

efficiency for data optimisation and improved

network performance. However, despite the

upsurge of literature on using Stochastic Diffusion

Search for various purposes, to the best of the

authors' knowledge, a hybrid-based model

utilising Stochastic Diffusion Search (SDS) and

Beam Search algorithms has not been developed.

2.2 Beam Search Algorithm

Lemons, López, Holte, & Ruml (2022) described

Beam search as a well-known satisficing method

for heuristic search problems that enables an

individual to trade increased computation time for

lower solution cost by increasing the beam width

parameter. Similarly, Meister, Vieira, & Cottrell

(2021) revealed that beam search is a common

heuristic algorithm for decoding structured

predictors. Despite providing no formal guarantee

of finding the highest-scoring hypothesis under

the model, beam search yields impressive

performance on various tasks (Stahlberg and

Byrne, 2019). Beam search generates the

sequence tokens individually while keeping a

fixed number of active candidates (beam size) at

each step (Cohen & Beck, 2019). However,

Meister et al. (2020) indicated that little work has

been done to speed up beam search operation.

Equally, Stahlberg & Byrne (2019) claim that in

most cases, beam search fails to find the optimal

output sequence. Beam search also chooses items

based purely on individual scores, with no means

for encoding candidate interaction (Choo, Kwon,

Kim, Jae, Hottung, Tierney, & Gwon, 2022).

2.3 Detailed comparisons between SDS and

other swarm intelligence algorithms

explain why SDS was chosen as a base for

the hybrid model.

Stochastic Diffusion Search differs from other

Swarm algorithms because of its one-to-one direct

recruitment mechanism, unlike Particle Swarm

Optimisation, where a neighborhood function

defines a set of neighboring search agents. Each

neighbor contributes incrementally to the

resultant vector that moves each particle. Its

application is similar to Beam Search in that it

keeps track of what is happening in other agents

and the regions that they are exploring. However,

one of the advantages is that Beam Search is able

to see more of the search context, whereas in

Particle Swarm Optimisation only sees what each

local social group sees. The beam acts in a similar

role to the neighborhoods function. However, the

difference is that neighborhoods are stable in

Particle Swarm Optimisation over the lifetime of

the algorithm. In contrast, the information

exchange moderated by the Beam Search varies as

the search progresses. The beam is not tied to a

particular set of actors as it distributes the

information as needed.

3. Methodology

3.1 Resources

This hybrid model was developed using Python.

Johansson, Johansson, & John (2019) described

Python as one of the programming languages of

many. Johansson et al. (2019) further indicated

that it is a powerful, elegant programming

language that is easy to understand and read. Lee

(2019) claims that Python makes machine

learning easy for beginners and experienced

developers and has powerful computing

capabilities that are useful in modern-day projects

like computer and data science. The above-

mentioned Python capabilities have convinced the

authors to adopt Python as a programming tool for

this hybrid classifier. All the libraries imported to

perform this operation are indicated in Table (3).

3.1.1 Pseudocode for the algorithm and in-

depth analysis

 Importing Libraries

Table 1: Libraries

[] import NumPy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import

Axes3D

Table 1 illustrates the necessary Python libraries

for numerical operations, plotting, and 3D

visualisations are imported. This includes NumPy

for mathematical operations, matplotlib, and

mpl_toolkits.mplot3d for plotting and visualising

data in 3D space.

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 216 of 270

 Item Class Definition

This defines a class Item to represent items with

attributes like budget, staff, hardware, and value.

This could be used in simulations that involve

resource allocation or optimisation tasks.

 Calculation Functions

Table 2: Cheap Calculation Function

[] def cheap_calculation(items):

 if items and isinstance(items[0],

Item):

 return sum(item.value for item in

items)

 else:

 return sum(items)

Table 2 shows a Cheap Calculation Function: A

function to calculate a simple sum of values for a

given list of items or numerical values.

 The cheap calculation function is

defined as:

𝐶ℎ𝑒𝑎𝑝𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑖𝑡𝑒𝑚𝑠)

= ∑ 𝑖𝑡𝑒𝑚. 𝑣𝑎𝑙𝑢𝑒

𝑖𝑡𝑒𝑚∈𝑖𝑡𝑒𝑚𝑠

This function computes a simple sum of the value

attributes of a list of Item objects, providing a

straightforward metric for evaluation.

Table 3: Expensive Calculation Function

[] def expensive_calculation(items):

 total_value = 0

 for item in items:

 if is instance(item, Item):

 total_value += item.value *

np.log(item.budget + 1) * item.staff / (item.

hardware + 1)

 else:

 total_value += item

 return total_value

Table 3 illustrates Expensive Calculation

Function: A more complex function calculates a

sum based on item attributes, adjusted by

logarithmic and division operations, to represent a

more complex valuation of items.

The expensive calculation involves a more

nuanced approach, incorporating multiple

attributes of each item:

𝐸𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑖𝑡𝑒𝑚𝑠)

= ∑ (𝑖𝑡𝑒𝑚. 𝑣𝑎𝑙𝑢𝑒

𝑖𝑡𝑒𝑚𝑠∈𝑖𝑡𝑒𝑚𝑠

× 𝑙𝑜𝑔(𝑖𝑡𝑒𝑚. 𝑏𝑢𝑑𝑔𝑒𝑡 + 1)

×
𝑖𝑡𝑒𝑚.𝑠𝑡𝑎𝑓𝑓

𝑖𝑡𝑒𝑚.ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 +1
)

This formula calculates a composite score by

factoring in the logarithm of the budget and the

ratio of staff to hardware, thereby providing a

more comprehensive evaluation of each value of

the items.

 Knapsack Variant Function

Table 4: Knapsack Variant Function
[] def select_items(items, max_budget, max_staff,

max_hardware):

 return [item for item in items if (

 item.budget <= max_budget and

 item.staff <= max_staff and

 item.hardware <= max_hardware

)]

Table 4 shows the Knapsack Variant Function.

This function selects items based on budget, staff,

and hardware constraints. It mimics the classic

knapsack problem by choosing items within

specified limits.

The selection function emulates a variant of the

knapsack problem, selecting items based on

constraints:

𝑆𝑒𝑙𝑒𝑐𝑡𝐼𝑡𝑒𝑚𝑠 (
𝑖𝑡𝑒𝑚𝑠, max _𝑏𝑢𝑑𝑔𝑒𝑡, max _𝑠𝑡𝑎𝑓𝑓,

𝑚𝑎𝑥_ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒
)

= { 𝑖𝑡𝑒𝑚|𝑖𝑡𝑒𝑚. 𝑏𝑢𝑑𝑔𝑒𝑡 ≤ 𝑚𝑎𝑥_𝑏𝑢𝑑𝑔𝑒𝑡
⋀ 𝑖𝑡𝑒𝑚. 𝑠𝑡𝑎𝑓𝑓 ≤ 𝑚𝑎𝑥_𝑠𝑡𝑎𝑓𝑓

 ⋀ 𝑖𝑡𝑒𝑚. ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 ≤ 𝑚𝑎𝑥_ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒}

 Agent and Beam Agent Class Definitions

Agents navigate the optimisation landscape while

Beam Agents track and analyse their progress.

Agent Movement and Satisfaction: Agents

assess their position based on a threshold and

move to optimise their score:

𝐼𝑠𝑈𝑛ℎ𝑎𝑝𝑝𝑦(𝑐ℎ𝑒𝑎𝑝_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

= {
𝑇𝑟𝑢𝑒 𝑖𝑓 𝑐ℎ𝑒𝑎𝑝_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐹𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 217 of 270

 Agent Position Update:

 𝑁𝑒𝑤𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 +
(𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 × 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒) +
 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1)

Beam Agent Update: Track agent positions and

their fitness estimates, maintaining an average

over time.

Table 5: Agent Class Function
[] Class Agent:

 def __init__(self, position):

 self.position = position

 def is_unhappy(self, cheap_estimate,

threshold):

 return cheap_estimate < threshold

 def move_to(self, new_position):

 self.position = new_position

Table 5 shows the Agent Class Function: It

represents an agent with a position in space,

capable of evaluating its satisfaction (is unhappy)

and moving to a new position with added jitter.

Table 6: Controller Agent Class Function
[] Class BeamAgent:

 def __init__(self, max_beam_size):

 self.beam = [# List of tuples

(agent_position, cheap_estimate)

 self.max_beam_size =

max_beam_size

 def update_beam(self, current_position,

cheap_estimate):

 self.beam.append((current_position,

cheap_estimate))

 self.beam.sort(key=lambda x: x[1],

reverse=True)

 if len(self.beam) >

self.max_beam_size:

 self. beam.pop()

 def recruit_agent(self, current_position):

 candidate_positions = [pos for pos, _

in self.beam if not np.array_equal(pos,

current_position)]

 if candidate_positions:

 return candidate_positions[0]

 else:

 return current_position

Table 6 shows a Beam Agent Class: It manages a

collection of agents' positions and their

evaluations (cheap estimates), tracking the

average fitness over time without a limit on the

number of tracked positions.

 Explore Vector Space Function

Table 7: Vector Space Exploration Function

[] def explore_vector_space(agents, beam_agent,

items, threshold, random_explore_prob=0.1):

 for agent in agents:

 if np.random.rand() <

random_explore_prob:

 new_position = np.random.randint(1,

5, size=3)

 else:

 selected_items = select_items(items,

*agent.position)

 cheap_score =

cheap_calculation(selected_items)

 beam_agent.update_beam(agent.po

sition, cheap_score)

 if agent.is_unhappy(cheap_score,

threshold):

 # if the agent is unhappy, it gets

assigned to a new a new position

 recruited_position =

beam_agent.recruit_agent(agent.position)

 new_position = recruited_position

 agent.move_to(new_position)

Table 7 illustrates a function that orchestrates

agents' exploration of vector space. Agents can

move randomly or towards better positions based

on item selections and their evaluations. It

includes mechanisms for moving agents based on

a gradient calculated from the fitness landscape to

find optimal positions.

The exploration function guides agents through

the vector space:

ExploreVectorSpace(agents,beam_agent,

items,threshold,X,Y,Z)

Agents move randomly or towards more optimal

positions based on the calculated gradients and

item evaluations.

 Compute Fitness Landscape and Gradient

Functions

This function computes the fitness landscape (a

hypothetical space representing the success of

different strategies or configurations) and the

gradient of this landscape at any given position.

These are essential for guiding agent movements

in a simulated optimisation task.

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 218 of 270

The fitness landscape is defined by a function Z =

𝑓(X, Y), and the gradient at any point is given by:

𝛻𝑍 = (
𝜕𝑍

𝜕𝑥
,
𝜕𝑍

𝜕𝑦
)

 ∇Z: This is the gradient of Z,

denoted by ∇

 𝜕𝑍: Partial derivatives of Z

with respect to x and y. The gradient guides the

agents' movement towards more optimal

positions.

3.2 Overview

This section details the Stochastic Diffusion

Search (SDS) and Beam Agent (BA). Fig. 1

illustrates the proposed hybrid model

methodology of the current. Readers are to be

reminded that the focus in this current study is not

particularly on the dataset; therefore, no specific

dataset is required because the focus is on the

agent interactions rather than on any particular

insights that might be drawn from the dataset.

Figure 1: Proposed hybrid model SDS-BA.

The symbols demonstrated in the diagram in

Figure 1 are explained below.

(A) Beam or Controller Agent, which is

responsible for maintaining a list of potentially

high-quality areas in the vector space for

recruitment purposes.

(B) An active agent exploration the search space

(C) Inactive agent in the search space

communicating with the Beam Agent

(D) In active agent seeking the solution (possible

high-quality areas in the vector space) from the

Beam Agent

(E) Recruited agent (received areas of

exploration from the Beam Agent)

(F) Search space

(G) Converged agents in the search space (agents

who found reach areas in the search space).

3.3 The Architecture or Optimisation of Stochastic

Diffusion Search (SDS)

In this algorithm, the population is initialised to

begin the search in the exploration space. Each

agent has their own hypothesis (h) to examine a

potential solution in the search space. All the

associated phases are explained below:

 Initialisation Phase

 Each agent is randomly allocated to

the search space to find a region with

documents.

 Test Phase

In this stage, SDS checks whether the agent

hypothesis is successful by performing a partial

hypothesis evaluation and returning a domain-

independent Boolean value. Each agent also

performs partial function evaluation, which is

some function of the agent's hypothesis. In this

study, the partial function evaluation entails a

region or search space which is randomly selected

and defined by the agent, and it performs the

following hypothesis.

 Each agent conducts exploration in the

search space

 Agents are classified into Active (happy)

and Inactive (unhappy) groups.

 Diffusion Phase

At this level, each agent recruits another agent for

interaction and potential communication of the

hypothesis. In this study, diffusion is performed

by communicating a region with possible

solutions.

 Inactive agents have to consider a new

region by communicating with another

agent.

 If the selected agent is also inactive, there

will be no information flow among the

agents; instead, the selected agent must

consider another region randomly.

3.4 Beam Agent Architecture

As indicated in the above sections, the purpose of

the beam agent is to maintain a list of potentially

high-quality areas in the vector space that, when

stochastic diffusion agents become inactive and

need to be recruited somewhere, has a list of

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 219 of 270

possible places for them to go. All the associated

stages are explained below:

 Initialises the Beam

 Update the Beam

 Update the beam with the current

agent's position and cheap estimate.

 Parameters;

 current_position(tuple):

current position of the

agent

 cheap_estimate (float):

cheap estimate value.

 Recruit the Agent

 Recruit an agent from the beam based

on the current agent's position.

 Parameters;

 current_position (tuple):

current position of the

agent.

 returns:

o tuple:

position of

the recruited

agent.

3.5 The Knapsack Problem

Sapra, Sharma, & Agarwal (2017) define the

Knapsack Problem as a combinatorial

optimisation maximisation problem that requires

finding the number of each weighted item to be

included in a hypothetical knapsack so that the

total weight is less than or equal to the required

weight. Similarly, Nomer, Alnowibet, Elsayed, &

Mohamed (2020) indicated that imagine a group

of items of known weights and values and a pack

or bag with a constrained limit for filling the

knapsack. To fill the indicated pack with the items

in such a way that their entire sum is probably the

highest without exceeding the pack's ability, a

problem known as the knapsack problem was

formulated. Nomer et al. (2020) revealed that

given a set of N items numbered from 1 to n, each

has a value (𝑣𝑖) and weight (𝑤𝑖). The maximum

weight capacity for the sack is denoted C. The

knapsack problem is defined as:

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 ∑ 𝑣𝑖

𝑁

𝑖=1

𝑥𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖

𝑁

𝑖=1

𝑥𝑖 ≤ 𝐶

𝑥𝑖𝜖 {0,1}

where 𝑣𝑖 𝑤𝑖 C are all positive integers. Nomer et

al. (2020) further indicated that informally, the

problem is stated as follows: Given a set of items,

each with a weight and a value, determine which

items to include in a collection so that the total

weight is less than or equal to a given limit and the

total value is as large as possible.

In the context of this study, a knapsack variant in

the project management domain was utilised to

test the hybrid model. This knapsack problem had

three units. These units include Budget, Staff and

Hardware. The main goal is to fill in objects inside

these three quantities or units while maintaining

the optimal balance or solution. In other words,

these items are added to the knapsack to maximise

the weight without exceeding the capacity or

threshold. The results demonstrated a high level of

values, indicating a better solution found by the

agents in the search space. The results also

showed a strong and consistent beam after a series

of iterations during the simulation.

3.5.1 Knapsack problem application

Stochastic Diffusion Search requires problems

that can be broken down into independently

evaluatable subproblems. So, not all problems

types are suitable; however, the knapsack problem

allows for such a decomposition and for this

reason, it has been used in this study. It is worth

noting that the Knapsack problem was picked as a

testbench for the architecture rather than the

problem motivating the algorithm.

4. Experiments, Results and Discussion

This section explains the results, starting with the

resources used for the experiment and concluding

with the final beam agent Visualisation and

Average Fitness over time.

4.1 Beam Agent (Figure 2)

Figure 2 (3D graph) represents the "Final Beam

Agent Visualisation." It shows the positions of

agents within a three-dimensional space, with the

axes representing different factors or dimensions

of the optimisation problem that the agents are

navigating.

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 220 of 270

Figure 2: Beam Agent

The interpretation this graph (Figure 2) can be

interpreted as below:

 Axes: The x, y, and z-axes correspond to the

three different dimensions the agents are

considering. These could represent different

factors, such as budget, staff, and hardware.

Each agent position in space represents a

potential solution with those specific values

for each factor.

 Surface: The Coloured surface represents the

fitness landscape, with different colours

indicating different fitness function values.

This fitness function measures how "good" a

particular solution is, with higher values being

better. The surface is like a plot of the function

Z = f (X, Y).

 Agents (Points): Each point represents an

agent. The position of a point indicates the

solution that the agent is currently considering

based on the factors represented by the x, y,

and z-axes.

 Colour of Agents: The colour of the agents

corresponds to the value of their "cheap

estimate," as indicated by the colour bar on

the right side of the graph. A gradient from

purple to yellow indicates increasing estimate

values, with yellow representing higher

values and purple representing lower values.

From this graph, the following summary is

observed:

 Distribution of Solutions: The spread of the

agents across space shows which areas have

been explored more densely. Clusters of

agents indicate regions where many potential

solutions can be found, suggesting that these

areas are of particular interest or have higher

fitness values.

 Fitness Landscape: The shape of the fitness

landscape (the Coloured surface) suggests

how the fitness value changes with different

combinations of the x and y factors. Peaks

represent high fitness values, while valleys

represent low fitness values. Agents ideally

should move towards the peaks to maximise

their fitness.

 Quality of Estimates: The colour intensity of

the agents indicates the quality of their

estimates. Agents with a brighter colour

(closer to yellow) are considered better in

terms of the cheap estimate calculation. An

accumulation of bright-Coloured agents in

one area could suggest a region of higher

fitness.

 Optimisation Potential: If agents have high-

value estimates on the edges or outside the

explored regions of the surface, it could

indicate that further exploration might yield

even better solutions.

In the context of this study, the visualisation (in

Figure 2) helps understand the results of the

agent-based optimisation process, showing which

solutions were found to be promising according to

the cheap calculation function and how these

solutions are distributed across the possible space

of budget, staff, and hardware configurations.

4.2 Average Fitness Over Time Graph (Figure

3)

The graph (Figure 3) plots Average Fitness Over

Time. The below indicates how this graph can be

interpreted.

 X-axis (Iteration): This represents the

iteration number in the optimisation process.

Each point corresponds to a single iteration

where the fitness is evaluated.

 Y-axis (Average Fitness): This axis shows

the average fitness value of the agents at each

iteration.

 Data Points: Each data point represents the

average fitness of all agents at a given

iteration. This is the result of calculations like

the cheap or expensive calculation functions.

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 221 of 270

Figure 3: Line Graph for Average Fitness Over Time

Summary of the Graph (Figure 3):

 Initial Fluctuations: The early iterations

show significant fluctuations in fitness. This

indicates a period of exploration where agents

are testing a wide variety of solutions.

 Convergence Over Time: As iterations

progress, the average fitness seems to

converge towards a more stable value. This

suggests that the agents are refining their

search and converging on solutions with

similar fitness values.

 Optimisation Progress: The general trend

appears to be a sharp increase in average

fitness initially, followed by a plateau. This

pattern is typical in optimisation problems

where easy gains are made early, with

subsequent improvements being more

challenging to find as the solutions approach

an optimal state.

 Stability of Solutions: The plateau at the later

stages indicates that the agents are clustered

around the most promising solutions, and

additional iterations do not result in

significant changes to the average fitness.

This could suggest that the optimisation

process has found a stable solution or is

trapped in a local optimum.

 Determining Termination: In this practice,

one might use such a graph to determine when

to terminate the optimisation process. Since

the graph levels are off and remain relatively

constant, one could argue that further

iterations might not yield substantial

improvements.

The behaviour observed in Figure 3 is typical for

many optimisation algorithms where initial

improvements are rapid, followed by slower

convergence as the algorithm fine-tunes the

solutions. It can also indicate the balance between

exploration (searching new areas of the solution

space) and exploitation (refining known good

areas).

4.3 Advantages/Benefits of the developed

hybrid model (Stochastic Diffusion Search

and Beam Agent combination)

This work represents the first time an actor-

oriented Stochastic Diffusion Search (SDS)

classifier is implemented with a Beam Agent

(BA), where the hybrid SDS-BA optimises the

recruitment and distribution of inactive agents to

a new search space or region. The actors

communicate with the controller agent, which

maintains a list of data structures called a beam

agent (candidate positions in the search space).

Each agent reports their data to the beam agent.

The controller agent evaluates all the results in

order to determine the ranking of clusters in terms

of their quality. The search space represents all

possible environments where agents can conduct

their own exploration. The advantages of this

model, compared to a standard (non-actor-

oriented) implementation, come from the

parallelism and distributed nature of the actor

model. For distribution, the model can use a larger

number of cheaper and lower-resourced

computers to run the system rather than a single,

more expensive machine instance for processing.

The actor model is inherently fault-tolerant;

however, that aspect is not explored in this paper.

Future work will consider these potential

advantages. The beam can be viewed as a list of

potentially high-quality regions within the search

space that can be distributed to the agents when

they are not satisfied with their performance in

whatever area they are located in the search space.

4.4 Summary of the Results

This paper presented a robust and efficient

solution that can be used to address optimisation

problems in machine learning models. It is a

hybrid model that combines Stochastic Diffusion

Search and Beam Agent algorithms. This

algorithm initialises the population to begin

exploration in the search space. Each agent has

their own hypothesis (h) to examine a potential

solution in the search space. The developed hybrid

model was tested using a knapsack variant. This

knapsack problem had three units: Budget, Staff

and Hardware. The main goal was to fill in objects

inside these three quantities or units, ensuring the

optimal balance or solution was maintained

without exceeding the threshold. As indicated in

the results in Figure 2, the classifier showed

higher values, which means better solutions found

by agents in the search space. The study also

developed a line graph (Figure 2) to show how the

average fitness score of agents changes over a

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 222 of 270

series of iterations (or time steps) during the

simulation. The graph demonstrates a number of

changes in the beam, especially when the number

of iterations increases.

4.5 Potential trade-offs between

computational efficiency and solution

quality

Trade-offs exist for all population-based

optimisation algorithms. The one presented in this

study is no different; at its core, it’s a population-

based search. The higher the dimensionality of the

problem, the longer it takes each actor to evaluate

the subproblem that it is working on, which would

slow the convergence of the overall algorithm.

However, because actors are running in parallel,

the whole algorithm should not stagnate. Not all

regions of the problem space are equally

challenging to evaluate, as some problems in the

problem space are more complex. Therefore, in

this algorithm, if some of the actors wind up

getting into regions where it takes a long time to

evaluate the subproblems, the rest of the algorithm

can still explore regions where it is quicker to

evaluate. Consequently, the whole algorithm does

not get stuck if one of the actors wanders into a

problematic region, which would happen in a non-

actor oriented or non-parallelised version of the

algorithm.

5. Conclusion

In the case of machine learning algorithms, the

performance of the model is a very critical issue.

This developed a hybrid actor based autoencoder

model to address the non-distributable nature of

the normally used algorithms. The newly

developed hybrid algorithm is completely

parallelised. Every actor is independent of every

other actor and can be run automatically, on its

own individual green thread but can, in fact, be

run on another computer. The results also showed

a strong and consistent beam agent after a series

of iterations performed during the simulation.

Future studies will compare the model with other

local searches beyond beam search for future

research. It will also be beneficial to look at

applications in component-oriented software

engineering, such as automated software factories

assembling component-oriented software. Such

an approach would search the space of programs

by building them up out of already existing

subprograms within resource, computational, and

size limits.

6. References

Choo, J., Kwon, Y. D., Kim, J., Jae, J., Hottung,

A., Tierney, K., & Gwon, Y. (2022).

Simulation-guided beam search for neural

combinatorial optimization. Advances in

Neural Information Processing

Systems, 35, 8760-8772.

Cohen, E., & Beck, C. (2019, May). Empirical

analysis of beam search performance

degradation in neural sequence models.

In International Conference on Machine

Learning (pp. 1290-1299). PMLR.

Goel, L., Neog, A., Aman, A., & Kaur, A. (2020).

Hybrid Nature-Inspired Optimization

Techniques in Face

Recognition. Transactions on

Computational Science XXXVI: Special

Issue on Cyberworlds and Cybersecurity,

99-126.

Johansson, R., Johansson, R., & John, S.

(2019). Numerical python (Vol. 1). New

York, NY: Apress.

Kamaraj, K., Lanitha, B., Karthic, S., Prakash, P.

N., & Mahaveerakannan, R. (2023). A

Hybridized Artificial Neural Network for

Automated Software Test

Oracle. Computer Systems Science &

Engineering, 45(2).

Lee, W.M. (2019). Python machine learning. John

Wiley & Sons.

Lemons, S., López, C. L., Holte, R. C., & Ruml,

W. (2022, June). Beam search: faster and

monotonic. In Proceedings of the

International Conference on Automated

Planning and Scheduling (Vol. 32, pp.

222-230).

Majid-al-Rifaie, M., & Bishop, J. M. (2020).

Stochastic Diffusion Search: A

Tutorial. Swarm Intelligence Algorithms,

307-321.

Maroufpoor, S., Azadnia, R., & Bozorg-Haddad,

O. (2020). Stochastic optimization:

stochastic diffusion search algorithm.

In Handbook of probabilistic models (pp.

437-448). Butterworth-Heinemann.

Martin, A. O. (2021). Stochastic Diffusion

Search. In Handbook of AI-based

Metaheuristics (pp. 151-198). CRC Press.

Martin, A. O., Bishop, J. M., Robinson, E. J., &

Myatt, D. R. (2019). Local termination

criteria for Swarm Intelligence: a

comparison between local Stochastic

Diffusion Search and ant nest-site

selection. Transactions on Computational

Collective Intelligence XXXII, 140-166.

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 223 of 270

Meister, C., Forster, M., & Cotterell, R. (2021).

Determinantal beam search. arXiv

preprint arXiv:2106.07400.

Nomer, H. A., Alnowibet, K. A., Elsayed, A., &

Mohamed, A. W. (2020). Neural

knapsack: a neural network based solver

for the knapsack problem. IEEE

access, 8, 224200-224210.

Osaba, E., Del Ser, J., Jubeto, X., Iglesias, A.,

Fister Jr, I., Gálvez, A., & Fister, I.

(2020). Distributed Coordination of

Heterogeneous Robotic Swarms Using

Stochastic Diffusion Search.

In Intelligent Data Engineering and

Automated Learning–IDEAL 2020: 21st

International Conference, Guimaraes,

Portugal, November 4–6, 2020,

Proceedings, Part II 21 (pp. 79-91).

Springer International Publishing.

Sapra, D., Sharma, R., & Agarwal, A. P. (2017,

January). Comparative study of

metaheuristic algorithms using Knapsack

Problem. In 2017 7th International

Conference on Cloud Computing, Data

Science & Engineering-Confluence (pp.

134-137). IEEE.

Shanthi, S., & Rajkumar, N. (2021). Lung cancer

prediction using stochastic diffusion

search (SDS) based feature selection and

machine learning methods. Neural

Processing Letters, 53(4), 2617-2630.

Stahlberg, F., & Byrne, B. (2019). On NMT

search errors and model errors: Cat got

your tongue? arXiv preprint

arXiv:1908.10090.

Suganya, E., & Rajan, C. J. W. N. (2021). An

adaboost-modified classifier using

particle swarm optimization and

stochastic diffusion search in wireless IoT

networks. Wireless Networks, 27(4),

2287-2299.

Tair, M., Bacanin, N., Zivkovic, M., &

Venkatachalam, K. (2022). A Chaotic

Oppositional Whale Optimisation

Algorithm with Firefly Search for

Medical Diagnostics. Computers,

Materials & Continua, 72(1).

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 224 of 270

	33_DYUBELE_ICONIC2024_formatted_071024.pdf (p.214-224)

