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Abstract 

Various swarm intelligence-based algorithms 

have been developed and explored over the years. 

These algorithms include particle swarm 

optimisation, spider monkey optimisation, 

artificial bee colony algorithm, ant colony 

optimisation, and bacterial foraging optimisation, 

among many others. However, according to the 

reviewed literature, classical or traditional 

optimisation methods are confronted with 

difficulties when scaling up to real-world 

optimisation problems; therefore, there is a need 

to develop efficient and robust computational 

algorithms that can solve problems numerically, 

irrespective of their sizes. Inspired by nature-

inspired swarm intelligence algorithms, this study 

has created a hybrid-based algorithm utilising 

Stochastic Diffusion Search (SDS) and Beam 

Search algorithms. In this model, SDS is 

incorporated because of its ability to operate as a 

multi-agent population-based global search and 

optimisation algorithm. The Beam Agent (BA) is 

utilised to initialise, update, and maintain a list of 

candidate regions in the search space. In addition, 

it is responsible for recruiting agents for those 

regions in the search space. A variation of the 

knapsack problem was employed to test the 

created hybrid model. In this problem, constraints 

were established, as discussed later in the paper 

(in section 3.5). The results discussed in section 4 

indicated that the algorithm found a better 

solution in the search space. The results also 

showed a strong and consistent beam after a series 

of iterations during the simulation. The specific 

improvements observed with the hybrid algorithm 

are that, because it is implemented as an actor-

oriented system, it is completely parallelised, 

every actor is independent of every other actor and 

can be run automatically, on its own individual 

green thread but can, in fact, be run on another 

computer. This parallelisability, composability, 

and the resulting distributable nature of the new 

algorithm are the main advantages over the 

standard implementation of either stochastic 

diffusion search or beam search, neither of which 

are parallelised by default. Its implication is based 

on the fact that the pace of improvement in 

available computing power has levelled off 

following several decades of sustained growth 

characterised by Moore's law. The hybrid 

algorithm is highly parallelisable, making it easy 

to take advantage of multiple cores on a single 

computer or multiple machine instances in a cloud 

computing scenario. Therefore, this is a modern 

version of both component algorithms within the 

proposed hybrid approach as it translates better 

into environments where it is easier to scale 

outwards rather than upwards. 

 

Keywords: Swarm Intelligence, Stochastic 

Diffusion Search, and Beam Agent 

 

1. Introduction 

Osaba, Del Ser, Jubeto, Iglesias, Fister, Gálvez, & 

Fister (2020) revealed that Stochastic Diffusion 

Search (SDS) was established in 1989 as a 

population-based pattern-matching method. 

Similarly, Martin, Bishop, Robinson, & Myatt 

(2019) claim that SDS is a novel probabilistic 

technique utilised to recognise and match the best 

fit. Kamaraj, Lanitha, Karthic, Prakash, and 

Mahaveerakannan (2023) indicated that SDS with 

the mathematical foundation is used to describe 

the algorithm behaviour by linear time 

complexity, convergence criteria to their 

minimum, stoutness, convergence at global 

optimum level, and resource assignment. Martin 

et al. (2019) alluded that agents collectively 

construct the solution by performing independent 

searches followed by the diffusion of information 

through the population. According to 

Maroufpoor, Azadnia, & Bozorg-Haddad (2020) 

and Osaba et al. (2020), SDS can be utilised to 

address optimisation-related problems even where 

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 214 of 270

sameerchand.pudaruth@gmail.com
Typewritten text
https://doi.org/10.59200/ICONIC.2024.023



the objective can be divided into different 

components that can be examined separately. Al-

Rifaie & Bishop (2020) indicated that various 

sectors have been leveraging the swarm 

intelligence-based algorithm known as Stochastic 

Diffusion Search (SDS) to solve many issues, 

including optimisation-related problems. Tair, 

Bacanin, Zivkovic, & Venkatachalam (2022) 

described optimisation as a process which aims to 

discover a solution that is either optimum or near-

to-optimal based on the stated goals and given 

constraints. Researchers have shown interest in 

developing a robust and simpler architecture of 

nature-inspired swarm intelligence algorithms, 

especially in complex search spaces, to solve 

optimisation-related problems (Rifaie & Bishop, 

2020). This study created a hybrid actor-oriented 

algorithm utilising both the Stochastic Diffusion 

Search (SDS) and Beam Search algorithms. The 

model accelerates the exploration property of the 

search space by the agents. All agents report their 

data to the controller agent. The controller agent 

evaluates all the results (statistics received from 

the agents while exploring the search 

environment), analyses them, and decides which 

cluster has the best quality.  

 

1.1 The motivation behind the use of 

Stochastic Diffusion Search (SDS) and 

Beam Search algorithms 

Stochastic Diffusion Search (SDS) is inherently 

agent oriented. While it has been previously 

implemented as an actor system, it is certainly not 

well explored. Its combination with Beam Search 

is accomplished through a local search using an 

ordered list of candidate regions to explore. 

Similarly, SDS has a pool of inactive agents that 

need to be recruited to potentially profitable 

regions of the search space. In the standard 

algorithm, they are recruited randomly with no 

knowledge of the topology of the search space. 

The proposed hybrid algorithm brings in 

knowledge of potentially good regions of the 

search space and stores it in the Beam data 

structure. The goal is to make search space 

exploration more effective through a more robust 

recruitment mechanism and to make the 

architecture of such systems more modular, 

composable, and distributable.   

1.2 Statement of the problem  

This study looks at the problem statement from a 

modular distributed AI point of view. It is based 

on the fact that modern AI systems have to be 

highly distributed, which taps into the advantages 

of cloud computing. However, many algorithms 

have been developed over the years without an 

eye towards being composable, modular, 

distributable systems; therefore, this study is 

motivated to try and find ways of creating such 

distributable and composable AI algorithms. 

1.3 The research gap 

The gap this current study seeks to address is the 

non-distributable nature of the normally used 

algorithm. No previous work has been identified 

combining Beam Search and Stochastic Diffusion 

Search as an actor system from the existing 

literature. The novelty of this study is not only 

based on the parallelism mentioned previously but 

also on intrinsic similarities between SDS and 

Beam Search. Both algorithms manage the 

exploration recruitment within the search space, 

with Beam Search providing a more nuanced 

mechanism for doing so for SDS. 

2. Literature Review 

Noisy environments and incomplete data are often 

at the heart of complex, real-world search and 

optimisation-related problems, generating input 

that established search heuristics sometimes have 

difficulty dealing with (Rifaie & Bishop, 2020). 

Similarly, Tair et al. (2022) revealed that since the 

turn of the century, there have been optimisation 

issues in both combinatorial and global 

optimisation. Over the years, many models have 

been developed to address these challenges with 

algorithms such as population-based stochastic 

metaheuristics. Tair et al. (2022) further indicated 

optimisation issues have been observed in many 

machine learning models. Goel, Neog, Aman, & 

Kaur (2020) revealed that many algorithms have 

been developed to address these problems; 

however, there is a need to develop more and 

better models to improve the results. Some meta-

heuristic global optimisation algorithms include 

the harmony search algorithm, Stochastic 

Diffusion Search (SDS), Particle Swarm 

Optimisation (PSO), etc. 

 

2.1 Stochastic Diffusion Search 

Suganya and Rajan (2021) stated that agents in the 

population contest for direct communication 

patterns like cooperative transport, which is 

present in social insects when performing 

evaluations of search space. However, according 

to Maroufpoor et al. (2020) and Martin (2021), for 

SDS, the hypothesis regarding potential solutions 

concerning the agent population is partially to 
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offer feedback that ensures the convergence of 

agents on a promising solution. Similarly, Osaba 

et al. (2020) conducted a study that gravitates on 

a heterogeneous Swarm Robotics system that 

utilise SDS as the coordination heuristics for the 

exploration, location and delimitation of areas 

scattered over the area where robots are deployed. 

Likewise, the reviewed literature revealed that a 

gradient boost-modified classifier with Particle 

Swarm Optimisation (PSO) and Stochastic 

Diffusion Search method for data optimisation in 

wireless sensor networks could be developed, 

with the results demonstrating the model's 

efficiency for data optimisation and improved 

network performance. However, despite the 

upsurge of literature on using Stochastic Diffusion 

Search for various purposes, to the best of the 

authors' knowledge, a hybrid-based model 

utilising Stochastic Diffusion Search (SDS) and 

Beam Search algorithms has not been developed.  

 

2.2 Beam Search Algorithm 

Lemons, López, Holte, & Ruml (2022) described 

Beam search as a well-known satisficing method 

for heuristic search problems that enables an 

individual to trade increased computation time for 

lower solution cost by increasing the beam width 

parameter. Similarly, Meister, Vieira, & Cottrell 

(2021) revealed that beam search is a common 

heuristic algorithm for decoding structured 

predictors. Despite providing no formal guarantee 

of finding the highest-scoring hypothesis under 

the model, beam search yields impressive 

performance on various tasks (Stahlberg and 

Byrne, 2019). Beam search generates the 

sequence tokens individually while keeping a 

fixed number of active candidates (beam size) at 

each step (Cohen & Beck, 2019). However, 

Meister et al. (2020) indicated that little work has 

been done to speed up beam search operation. 

Equally, Stahlberg & Byrne (2019) claim that in 

most cases,  beam search fails to find the optimal 

output sequence. Beam search also chooses items 

based purely on individual scores, with no means 

for encoding candidate interaction (Choo, Kwon, 

Kim, Jae, Hottung, Tierney, & Gwon, 2022).  

 

2.3 Detailed comparisons between SDS and 

other swarm intelligence algorithms 

explain why SDS was chosen as a base for 

the hybrid model. 

Stochastic Diffusion Search differs from other 

Swarm algorithms because of its one-to-one direct 

recruitment mechanism, unlike Particle Swarm 

Optimisation, where a neighborhood function 

defines a set of neighboring search agents. Each 

neighbor contributes incrementally to the 

resultant vector that moves each particle. Its 

application is similar to Beam Search in that it 

keeps track of what is happening in other agents 

and the regions that they are exploring. However, 

one of the advantages is that Beam Search is able 

to see more of the search context, whereas in 

Particle Swarm Optimisation only sees what each 

local social group sees. The beam acts in a similar 

role to the neighborhoods function. However, the 

difference is that neighborhoods are stable in 

Particle Swarm Optimisation over the lifetime of 

the algorithm. In contrast, the information 

exchange moderated by the Beam Search varies as 

the search progresses. The beam is not tied to a 

particular set of actors as it distributes the 

information as needed. 

 

3. Methodology 

3.1 Resources 

This hybrid model was developed using Python. 

Johansson, Johansson, & John (2019) described 

Python as one of the programming languages of 

many. Johansson et al. (2019) further indicated 

that it is a powerful, elegant programming 

language that is easy to understand and read. Lee 

(2019) claims that Python makes machine 

learning easy for beginners and experienced 

developers and has powerful computing 

capabilities that are useful in modern-day projects 

like computer and data science. The above-

mentioned Python capabilities have convinced the 

authors to adopt Python as a programming tool for 

this hybrid classifier. All the libraries imported to 

perform this operation are indicated in Table (3). 

 

3.1.1 Pseudocode for the algorithm and in-

depth analysis 

 Importing Libraries 

 

Table 1: Libraries 

[ ] import NumPy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import 

Axes3D 

 

Table 1 illustrates the necessary Python libraries 

for numerical operations, plotting, and 3D 

visualisations are imported. This includes NumPy 

for mathematical operations, matplotlib, and 

mpl_toolkits.mplot3d for plotting and visualising 

data in 3D space. 
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 Item Class Definition 

This defines a class Item to represent items with 

attributes like budget, staff, hardware, and value. 

This could be used in simulations that involve 

resource allocation or optimisation tasks. 

 

 Calculation Functions 

 

Table 2: Cheap Calculation Function 

[ ] def cheap_calculation(items): 

           if items and isinstance(items[0], 

Item): 

               return sum(item.value for item in 

items) 

       else: 

               return sum(items) 

 

Table 2 shows a Cheap Calculation Function: A 

function to calculate a simple sum of values for a 

given list of items or numerical values. 

                     The cheap calculation function is 

defined as: 

𝐶ℎ𝑒𝑎𝑝𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑖𝑡𝑒𝑚𝑠)  

= ∑ 𝑖𝑡𝑒𝑚. 𝑣𝑎𝑙𝑢𝑒

𝑖𝑡𝑒𝑚∈𝑖𝑡𝑒𝑚𝑠 

 

 

This function computes a simple sum of the value 

attributes of a list of Item objects, providing a 

straightforward metric for evaluation. 

 

Table 3: Expensive Calculation Function 

[ ] def expensive_calculation(items): 

         total_value = 0 

         for item in items: 

               if is instance(item, Item): 

                        total_value += item.value * 

np.log(item.budget + 1) * item.staff / (item. 

hardware + 1) 

              else: 

                        total_value += item 

         return total_value 

 

Table 3 illustrates Expensive Calculation 

Function: A more complex function calculates a 

sum based on item attributes, adjusted by 

logarithmic and division operations, to represent a 

more complex valuation of items. 

The expensive calculation involves a more 

nuanced approach, incorporating multiple 

attributes of each item: 

𝐸𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑖𝑡𝑒𝑚𝑠)

=  ∑ (𝑖𝑡𝑒𝑚. 𝑣𝑎𝑙𝑢𝑒 

𝑖𝑡𝑒𝑚𝑠∈𝑖𝑡𝑒𝑚𝑠

×  𝑙𝑜𝑔(𝑖𝑡𝑒𝑚. 𝑏𝑢𝑑𝑔𝑒𝑡 + 1)

×
𝑖𝑡𝑒𝑚.𝑠𝑡𝑎𝑓𝑓

𝑖𝑡𝑒𝑚.ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 +1
) 

 

This formula calculates a composite score by 

factoring in the logarithm of the budget and the 

ratio of staff to hardware, thereby providing a 

more comprehensive evaluation of each value of 

the items. 

 

 Knapsack Variant Function 

 

Table 4: Knapsack Variant Function 
[ ] def select_items(items, max_budget, max_staff, 

max_hardware): 

            return [item for item in items if ( 

                   item.budget <= max_budget and 

                    item.staff <= max_staff and 

                    item.hardware <= max_hardware 

                )] 

 

Table 4 shows the Knapsack Variant Function. 

This function selects items based on budget, staff, 

and hardware constraints. It mimics the classic 

knapsack problem by choosing items within 

specified limits. 

 

The selection function emulates a variant of the 

knapsack problem, selecting items based on 

constraints: 

 

𝑆𝑒𝑙𝑒𝑐𝑡𝐼𝑡𝑒𝑚𝑠 (
𝑖𝑡𝑒𝑚𝑠, max _𝑏𝑢𝑑𝑔𝑒𝑡, max _𝑠𝑡𝑎𝑓𝑓,

𝑚𝑎𝑥_ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒
) 

= {  𝑖𝑡𝑒𝑚|𝑖𝑡𝑒𝑚. 𝑏𝑢𝑑𝑔𝑒𝑡 ≤ 𝑚𝑎𝑥_𝑏𝑢𝑑𝑔𝑒𝑡
⋀   𝑖𝑡𝑒𝑚. 𝑠𝑡𝑎𝑓𝑓 ≤ 𝑚𝑎𝑥_𝑠𝑡𝑎𝑓𝑓

        ⋀ 𝑖𝑡𝑒𝑚. ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 ≤ 𝑚𝑎𝑥_ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒}
      

 

 Agent and Beam Agent Class Definitions 

Agents navigate the optimisation landscape while 

Beam Agents track and analyse their progress. 

 

Agent Movement and Satisfaction: Agents 

assess their position based on a threshold and 

move to optimise their score: 

 

𝐼𝑠𝑈𝑛ℎ𝑎𝑝𝑝𝑦(𝑐ℎ𝑒𝑎𝑝_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)  

=  {
𝑇𝑟𝑢𝑒    𝑖𝑓 𝑐ℎ𝑒𝑎𝑝_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 <  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐹𝑎𝑙𝑠𝑒       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  
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 Agent Position Update:                 

 

 𝑁𝑒𝑤𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 +
(𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 × 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒)  +
 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−1,1) 

 

Beam Agent Update: Track agent positions and 

their fitness estimates, maintaining an average 

over time. 

 

Table 5: Agent Class Function 
[ ] Class Agent: 

            def __init__(self, position): 

                    self.position = position 

 

            def is_unhappy(self, cheap_estimate, 

threshold): 

                      return cheap_estimate < threshold 

 

           def move_to(self, new_position): 

                  self.position = new_position 

 

Table 5 shows the Agent Class Function: It 

represents an agent with a position in space, 

capable of evaluating its satisfaction (is unhappy) 

and moving to a new position with added jitter. 

 

Table 6: Controller Agent Class Function 
[ ] Class BeamAgent: 

          def __init__(self, max_beam_size): 

                self.beam = [# List of tuples 

(agent_position, cheap_estimate) 

                self.max_beam_size = 

max_beam_size 

 

         def update_beam(self, current_position, 

cheap_estimate): 

                self.beam.append((current_position, 

cheap_estimate)) 

                self.beam.sort(key=lambda x: x[1], 

reverse=True) 

                 if len(self.beam) > 

self.max_beam_size: 

                                 self. beam.pop() 

 

         def recruit_agent(self, current_position): 

               candidate_positions = [pos for pos, _ 

in self.beam if not np.array_equal(pos, 

current_position)] 

               if candidate_positions: 

                  return candidate_positions[0] 

         else: 

                 return current_position 

 

Table 6 shows a Beam Agent Class: It manages a 

collection of agents' positions and their 

evaluations (cheap estimates), tracking the 

average fitness over time without a limit on the 

number of tracked positions. 

 

 Explore Vector Space Function 

 

Table 7: Vector Space Exploration Function 

[ ] def explore_vector_space(agents, beam_agent, 

items, threshold, random_explore_prob=0.1): 

          for agent in agents: 

                 if np.random.rand() < 

random_explore_prob: 

                         new_position = np.random.randint(1, 

5, size=3) 

                else: 

                        selected_items = select_items(items, 

*agent.position) 

                         cheap_score = 

cheap_calculation(selected_items) 

                          beam_agent.update_beam(agent.po

sition, cheap_score) 

 

                          if agent.is_unhappy(cheap_score, 

threshold): 

                              # if the agent is unhappy, it gets 

assigned to a new  a new position 

                                   recruited_position = 

beam_agent.recruit_agent(agent.position) 

                                   new_position = recruited_position 

                                   agent.move_to(new_position) 

 

Table 7 illustrates a function that orchestrates 

agents' exploration of vector space. Agents can 

move randomly or towards better positions based 

on item selections and their evaluations. It 

includes mechanisms for moving agents based on 

a gradient calculated from the fitness landscape to 

find optimal positions. 

 

The exploration function guides agents through 

the vector space: 

 

ExploreVectorSpace(agents,beam_agent, 

items,threshold,X,Y,Z) 

 

Agents move randomly or towards more optimal 

positions based on the calculated gradients and 

item evaluations. 

 

 Compute Fitness Landscape and Gradient 

Functions 

This function computes the fitness landscape (a 

hypothetical space representing the success of 

different strategies or configurations) and the 

gradient of this landscape at any given position. 

These are essential for guiding agent movements 

in a simulated optimisation task. 
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The fitness landscape is defined by a function Z =  

𝑓(X, Y ), and the gradient at any point is given by: 

 

𝛻𝑍 = (
𝜕𝑍

𝜕𝑥
,
𝜕𝑍

𝜕𝑦
) 

       

                                 ∇Z: This is the gradient of Z, 

denoted by ∇  

                                 𝜕𝑍:   Partial derivatives of Z 

with respect to x and y. The gradient guides the 

agents' movement towards more optimal 

positions. 

 
3.2 Overview 

This section details the Stochastic Diffusion 

Search (SDS) and Beam Agent (BA). Fig. 1 

illustrates the proposed hybrid model 

methodology of the current. Readers are to be 

reminded that the focus in this current study is not 

particularly on the dataset; therefore, no specific 

dataset is required because the focus is on the 

agent interactions rather than on any particular 

insights that might be drawn from the dataset. 

 

Figure 1: Proposed hybrid model SDS-BA. 

 

The symbols demonstrated in the diagram in 

Figure 1 are explained below. 

(A) Beam or Controller Agent, which is 

responsible for maintaining a list of potentially 

high-quality areas in the vector space for 

recruitment purposes. 

(B) An active agent exploration the search space 

(C) Inactive agent in the search space 

communicating with the Beam Agent 

(D) In active agent seeking the solution (possible 

high-quality areas in the vector space) from the 

Beam Agent  

(E) Recruited agent (received areas of 

exploration from the Beam Agent) 

(F) Search space 

(G) Converged agents in the search space (agents 

who found reach areas in the search space). 

3.3 The Architecture or Optimisation of Stochastic 

Diffusion Search (SDS) 

In this algorithm, the population is initialised to 

begin the search in the exploration space. Each 

agent has their own hypothesis (h) to examine a 

potential solution in the search space. All the 

associated phases are explained below: 

 Initialisation Phase 

 Each agent is randomly allocated to 

the search space to find a region with 

documents. 
 

 Test Phase  

In this stage, SDS checks whether the agent 

hypothesis is successful by performing a partial 

hypothesis evaluation and returning a domain-

independent Boolean value. Each agent also 

performs partial function evaluation, which is 

some function of the agent's hypothesis. In this 

study, the partial function evaluation entails a 

region or search space which is randomly selected 

and defined by the agent, and it performs the 

following hypothesis. 

 Each agent conducts exploration in the 

search space  

 Agents are classified into Active (happy) 

and Inactive (unhappy) groups. 

 Diffusion Phase 

At this level, each agent recruits another agent for 

interaction and potential communication of the 

hypothesis. In this study, diffusion is performed 

by communicating a region with possible 

solutions. 

 Inactive agents have to consider a new 

region by communicating with another 

agent. 

 If the selected agent is also inactive, there 

will be no information flow among the 

agents; instead, the selected agent must 

consider another region randomly. 

3.4 Beam Agent Architecture 

As indicated in the above sections, the purpose of 

the beam agent is to maintain a list of potentially 

high-quality areas in the vector space that, when 

stochastic diffusion agents become inactive and 

need to be recruited somewhere, has a list of 
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possible places for them to go. All the associated 

stages are explained below: 

 

 Initialises the Beam 

 Update the Beam 

 Update the beam with the current 

agent's position and cheap estimate. 

 Parameters; 

 current_position(tuple): 

current position of the 

agent 

 cheap_estimate (float): 

cheap estimate value. 

 Recruit the Agent 

 Recruit an agent from the beam based 

on the current agent's position. 

 Parameters; 

 current_position (tuple): 

current position of the 

agent. 

 returns: 

o tuple: 

position of 

the recruited 

agent. 

3.5 The Knapsack Problem 

Sapra, Sharma, & Agarwal (2017) define the 

Knapsack Problem as a combinatorial 

optimisation maximisation problem that requires 

finding the number of each weighted item to be 

included in a hypothetical knapsack so that the 

total weight is less than or equal to the required 

weight. Similarly, Nomer, Alnowibet, Elsayed, & 

Mohamed (2020) indicated that imagine a group 

of items of known weights and values and a pack 

or bag with a constrained limit for filling the 

knapsack. To fill the indicated pack with the items 

in such a way that their entire sum is probably the 

highest without exceeding the pack's ability, a 

problem known as the knapsack problem was 

formulated. Nomer et al. (2020) revealed that 

given a set of N items numbered from 1 to n, each 

has a value ( 𝑣𝑖 ) and weight ( 𝑤𝑖). The maximum 

weight capacity for the sack is denoted C. The 

knapsack problem is defined as: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 ∑ 𝑣𝑖

𝑁

𝑖=1

𝑥𝑖 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖

𝑁

𝑖=1

𝑥𝑖 ≤ 𝐶 

𝑥𝑖𝜖 {0,1} 

where 𝑣𝑖 𝑤𝑖 C are all positive integers. Nomer et 

al. (2020)  further indicated that informally, the 

problem is stated as follows: Given a set of items, 

each with a weight and a value, determine which 

items to include in a collection so that the total 

weight is less than or equal to a given limit and the 

total value is as large as possible. 

In the context of this study, a knapsack variant in 

the project management domain was utilised to 

test the hybrid model. This knapsack problem had 

three units. These units include Budget, Staff and 

Hardware. The main goal is to fill in objects inside 

these three quantities or units while maintaining 

the optimal balance or solution. In other words, 

these items are added to the knapsack to maximise 

the weight without exceeding the capacity or 

threshold. The results demonstrated a high level of 

values, indicating a better solution found by the 

agents in the search space. The results also 

showed a strong and consistent beam after a series 

of iterations during the simulation. 

3.5.1 Knapsack problem application 

Stochastic Diffusion Search requires problems 

that can be broken down into independently 

evaluatable subproblems. So, not all problems 

types are suitable; however, the knapsack problem 

allows for such a decomposition and for this 

reason, it has been used in this study. It is worth 

noting that the Knapsack problem was picked as a 

testbench for the architecture rather than the 

problem motivating the algorithm. 

4. Experiments, Results and Discussion 

This section explains the results, starting with the 

resources used for the experiment and concluding 

with the final beam agent Visualisation and 

Average Fitness over time. 

  

4.1 Beam Agent (Figure 2) 

Figure 2 (3D graph) represents the "Final Beam 

Agent Visualisation." It shows the positions of 

agents within a three-dimensional space, with the 

axes representing different factors or dimensions 

of the optimisation problem that the agents are 

navigating. 
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Figure 2: Beam Agent  

 

The interpretation this graph (Figure 2) can be 

interpreted as below: 

 

 Axes: The x, y, and z-axes correspond to the 

three different dimensions the agents are 

considering. These could represent different 

factors, such as budget, staff, and hardware. 

Each agent position in space represents a 

potential solution with those specific values 

for each factor. 

 Surface: The Coloured surface represents the 

fitness landscape, with different colours 

indicating different fitness function values. 

This fitness function measures how "good" a 

particular solution is, with higher values being 

better. The surface is like a plot of the function 

Z = f (X, Y). 

 Agents (Points): Each point represents an 

agent. The position of a point indicates the 

solution that the agent is currently considering 

based on the factors represented by the x, y, 

and z-axes. 

 Colour of Agents: The colour of the agents 

corresponds to the value of their "cheap 

estimate," as indicated by the colour bar on 

the right side of the graph. A gradient from 

purple to yellow indicates increasing estimate 

values, with yellow representing higher 

values and purple representing lower values. 

 

From this graph, the following summary is 

observed: 

 Distribution of Solutions: The spread of the 

agents across space shows which areas have 

been explored more densely. Clusters of 

agents indicate regions where many potential 

solutions can be found, suggesting that these 

areas are of particular interest or have higher 

fitness values. 

 

 Fitness Landscape: The shape of the fitness 

landscape (the Coloured surface) suggests 

how the fitness value changes with different 

combinations of the x and y factors. Peaks 

represent high fitness values, while valleys 

represent low fitness values. Agents ideally 

should move towards the peaks to maximise 

their fitness. 

 Quality of Estimates: The colour intensity of 

the agents indicates the quality of their 

estimates. Agents with a brighter colour 

(closer to yellow) are considered better in 

terms of the cheap estimate calculation. An 

accumulation of bright-Coloured agents in 

one area could suggest a region of higher 

fitness. 

 Optimisation Potential: If agents have high-

value estimates on the edges or outside the 

explored regions of the surface, it could 

indicate that further exploration might yield 

even better solutions. 

 

In the context of this study, the visualisation (in 

Figure 2)  helps understand the results of the 

agent-based optimisation process, showing which 

solutions were found to be promising according to 

the cheap calculation function and how these 

solutions are distributed across the possible space 

of budget, staff, and hardware configurations. 

 

4.2 Average Fitness Over Time Graph (Figure 

3) 

The graph (Figure 3) plots Average Fitness Over 

Time. The below indicates how this graph can be 

interpreted. 

 X-axis (Iteration): This represents the 

iteration number in the optimisation process. 

Each point corresponds to a single iteration 

where the fitness is evaluated. 

 Y-axis (Average Fitness): This axis shows 

the average fitness value of the agents at each 

iteration. 

 Data Points: Each data point represents the 

average fitness of all agents at a given 

iteration. This is the result of calculations like 

the cheap or expensive calculation functions. 
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Figure 3: Line Graph for Average Fitness Over Time 
 

Summary of the Graph (Figure 3): 

 Initial Fluctuations: The early iterations 

show significant fluctuations in fitness. This 

indicates a period of exploration where agents 

are testing a wide variety of solutions. 

 Convergence Over Time: As iterations 

progress, the average fitness seems to 

converge towards a more stable value. This 

suggests that the agents are refining their 

search and converging on solutions with 

similar fitness values. 

 Optimisation Progress: The general trend 

appears to be a sharp increase in average 

fitness initially, followed by a plateau. This 

pattern is typical in optimisation problems 

where easy gains are made early, with 

subsequent improvements being more 

challenging to find as the solutions approach 

an optimal state. 

 Stability of Solutions: The plateau at the later 

stages indicates that the agents are clustered 

around the most promising solutions, and 

additional iterations do not result in 

significant changes to the average fitness. 

This could suggest that the optimisation 

process has found a stable solution or is 

trapped in a local optimum. 

 Determining Termination: In this practice, 

one might use such a graph to determine when 

to terminate the optimisation process. Since 

the graph levels are off and remain relatively 

constant, one could argue that further 

iterations might not yield substantial 

improvements. 
 

The behaviour observed in Figure 3 is typical for 

many optimisation algorithms where initial 

improvements are rapid, followed by slower 

convergence as the algorithm fine-tunes the 

solutions. It can also indicate the balance between 

exploration (searching new areas of the solution 

space) and exploitation (refining known good 

areas). 

4.3 Advantages/Benefits of the developed 

hybrid model (Stochastic Diffusion Search 

and Beam Agent combination) 

This work represents the first time an actor-

oriented Stochastic Diffusion Search (SDS) 

classifier is implemented with a Beam Agent 

(BA), where the hybrid SDS-BA optimises the 

recruitment and distribution of inactive agents to 

a new search space or region. The actors 

communicate with the controller agent, which 

maintains a list of data structures called a beam 

agent (candidate positions in the search space). 

Each agent reports their data to the beam agent. 

The controller agent evaluates all the results in 

order to determine the ranking of clusters in terms 

of their quality. The search space represents all 

possible environments where agents can conduct 

their own exploration. The advantages of this 

model, compared to a standard (non-actor-

oriented) implementation, come from the 

parallelism and distributed nature of the actor 

model. For distribution, the model can use a larger 

number of cheaper and lower-resourced 

computers to run the system rather than a single, 

more expensive machine instance for processing. 

The actor model is inherently fault-tolerant; 

however, that aspect is not explored in this paper. 

Future work will consider these potential 

advantages. The beam can be viewed as a list of 

potentially high-quality regions within the search 

space that can be distributed to the agents when 

they are not satisfied with their performance in 

whatever area they are located in the search space. 

 

4.4 Summary of the Results 

This paper presented a robust and efficient 

solution that can be used to address optimisation 

problems in machine learning models. It is a 

hybrid model that combines Stochastic Diffusion 

Search and Beam Agent algorithms. This 

algorithm initialises the population to begin 

exploration in the search space. Each agent has 

their own hypothesis (h) to examine a potential 

solution in the search space. The developed hybrid 

model was tested using a knapsack variant. This 

knapsack problem had three units: Budget, Staff 

and Hardware. The main goal was to fill in objects 

inside these three quantities or units, ensuring the 

optimal balance or solution was maintained 

without exceeding the threshold. As indicated in 

the results in Figure 2, the classifier showed 

higher values, which means better solutions found 

by agents in the search space. The study also 

developed a line graph (Figure 2) to show how the 

average fitness score of agents changes over a 
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series of iterations (or time steps) during the 

simulation. The graph demonstrates a number of 

changes in the beam, especially when the number 

of iterations increases. 
 

4.5 Potential trade-offs between 

computational efficiency and solution 

quality 

Trade-offs exist for all population-based 

optimisation algorithms. The one presented in this 

study is no different; at its core, it’s a population-

based search. The higher the dimensionality of the 

problem, the longer it takes each actor to evaluate 

the subproblem that it is working on, which would 

slow the convergence of the overall algorithm. 

However, because actors are running in parallel, 

the whole algorithm should not stagnate. Not all 

regions of the problem space are equally 

challenging to evaluate, as some problems in the 

problem space are more complex. Therefore, in 

this algorithm, if some of the actors wind up 

getting into regions where it takes a long time to 

evaluate the subproblems, the rest of the algorithm 

can still explore regions where it is quicker to 

evaluate. Consequently, the whole algorithm does 

not get stuck if one of the actors wanders into a 

problematic region, which would happen in a non-

actor oriented or non-parallelised version of the 

algorithm. 

 

5. Conclusion  

In the case of machine learning algorithms, the 

performance of the model is a very critical issue. 

This developed a hybrid actor based autoencoder 

model to address the non-distributable nature of 

the normally used algorithms. The newly 

developed hybrid algorithm is completely 

parallelised. Every actor is independent of every 

other actor and can be run automatically, on its 

own individual green thread but can, in fact, be 

run on another computer. The results also showed 

a strong and consistent beam agent after a series 

of iterations performed during the simulation. 

Future studies will compare the model with other 

local searches beyond beam search for future 

research. It will also be beneficial to look at 

applications in component-oriented software 

engineering, such as automated software factories 

assembling component-oriented software. Such 

an approach would search the space of programs 

by building them up out of already existing 

subprograms within resource, computational, and 

size limits. 
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