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Abstract 

A machine learning model capable of predicting 

the probability of road fatal events in both time 

and space is developed. By aggregating relevant 

features of the Western Cape into an H3 grid, the 

model learns patterns of fatal events. Traditional 

machine learning and deep learning techniques 

are employed to understand the relationship 

between aggregated features and road fatal events. 

The models are compared against each other and 

against historical average models currently used 

in the industry. This study represents the first 

attempt to use machine learning techniques to 

model road traffic fatalities in South Africa, 

specifically in the Western Cape. 

 

Keywords: Road Traffic Fatalities, Spatio-

Temporal Modeling, Machine Learning, South 

Africa 

 

1. Introduction 

Road traffic accidents claim approximately 1.35 

million lives annually, cause injuries to an 

estimated 50 million people, and are the leading 

cause of death for people aged 5 to 29 years old 

(Global Status Report on Road Safety 2018, 

2018). To reduce road traffic fatalities, the World 

Health Organization, the United Nations Regional 

Commissions, and other stakeholders compiled a 

global plan which aims to reduce road fatalities by 

at least 50% by 2030 (Global Plan Decade of 

Action for Road Safety 2021-2030, 2021).  

 

To achieve a drastic reduction in road traffic 

fatalities, low- and middle-income countries must 

be prioritized. Ninety percent of road traffic 

fatalities currently occur in low- and middle-

income countries, even though less than 60% of 

the world's motor vehicles are found in these 

countries (Global Plan Decade of Action for Road 

Safety 2021-2030, 2021).  

South Africa has managed to reduce the road 

fatality rate per 100,000 inhabitants from 24.72 in 

2017 to 19.39 in 2023 (State of Road Safety in 

South Africa: January 2023 to December 2023, 

2024). Despite this decrease, the current road 

fatality rate in South Africa is still higher than the 

global average of 15 road fatalities per 100,000 

inhabitants and higher than the African 

continent’s road fatality rate of 19 (State of Road 

Safety in South Africa: January 2023 to December 

2023, 2024).  

 

As a participant in the global road safety action 

plan, South Africa has undertaken to reduce road 

fatalities by at least 50% by 2030. This means that 

the annual number of road fatalities in South 

Africa needs to decrease to 6,984 by 2030 from 

the current 11,883 annual road fatalities (State of 

Road Safety in South Africa: January 2023 to 

December 2023, 2024). Similar to other low- and 

middle-income countries, the main challenge in 

reducing road fatalities in South Africa is funding 

(State of Road Safety in South Africa: January 

2023 to December 2023, 2024).  
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Given limited funding, innovative solutions are 

required that optimally use the limited resources 

available. The emergence of big data and the 

development of artificial intelligent algorithms 

offer promising solutions to predict road traffic 

accidents across time and space (Bao et al., 2019). 

By anticipating areas and timeframes with high 

road fatality risks, local authorities can implement 

targeted safety measures and improve post-

accident response. 

 

Traditional approaches used to predict road traffic 

fatalities primarily rely on historical accident data 

to forecast future incidents over the long term. 

Apart from poor generalization, long-term 

predictions considerably limit the potential for 

intervention, as it is unclear when events are likely 

to occur. Machine learning-based approaches can 

predict road traffic fatalities across space in the 

short term by integrating multiple data sources 

and learning complex patterns. Machine learning-

based road fatality prediction models have 

historically been applied on small road segments, 

or, when evaluated on extensive road networks, it 

is commonly applied in the context of high-

income countries. 

 

In this study, a machine learning-based road 

fatality prediction model is developed for the 

Western Cape province, one of the nine provinces 

of South Africa. Road fatality event data is 

integrated with road infrastructure data and 

weather data across time and space. The 

aggregated data is used to develop and compare 

the appropriateness of multiple vector-based and 

raster-based models to predict road fatalities 

across time and space. The developed approach 

outperforms historical average models currently 

used in the industry. Unlike previous approaches, 

data availability is explicitly considered in the 

design of the approach to enable countries to 

deploy the approach using limited data.  

 

The paper proceeds as follows. Related 

approaches used to predict road traffic accidents 

are discussed in Section 2. Section 3 outlines the 

steps followed to develop a road traffic fatality 

model for the Western Cape. The performance of 

the approach outlined is discussed in Section 4. 

The practical considerations of using the model to 

reduce road fatalities are discussed in Section 5, 

followed by the conclusion in Section 6. 

 

 

 

2. Related Work 

Road traffic accidents have been defined, using 

various terms and definitions (Al-Hasani, 2021). 

Peden et al. (2004) differentiate between a road 

traffic crash, a road traffic accident and a road 

traffic fatality. Road traffic crashes encompass all 

events which involve at least one motor vehicle, 

road traffic accidents include all crashes where at 

least one injury or fatality occurred, and road 

traffic fatalities refer to events resulting in death 

within 30 days of the crash (Peden et al., 2004). In 

South Africa, road traffic accidents are only 

considered road traffic fatalities when a victim(s) 

dies within six days of the event (Arrive Alive, 

n.d.). 

 

When considering a predictive modeling 

approach, the target feature must be clearly 

defined with explicit consideration of data 

availability. While predicting all road traffic 

accidents offers additional benefits, it requires the 

collection and confirmation of all traffic accident 

data which might be infeasible in a resource-

constrained environment. Even in unconstrained 

environments, collecting all traffic accident 

events can be challenging since less severe traffic 

accidents are often not reported (Abdulhafedh, 

2017). In Africa, road traffic accidents tend to be 

underreported (Road Transport Accident Deaths 

in South Africa, 2007-2019, 2024). Data 

collection in South Africa is further complicated 

by the involvement of multiple stakeholders (State 

of Road Safety in South Africa: January 2023 to 

December 2023, 2024). Given these challenges, 

focusing on road traffic fatalities is more 

appropriate in countries with limited resources. 

 

The timing of road traffic fatality data collection 

should also be considered when determining an 

appropriate modeling approach. Models based on 

sequential data are often recommended. For 

instance, Ren et al. (2018) proposed using a long 

short-term memory (LSTM) artificial neural 

network. This method however requires a 

sequence of recent confirmed traffic accidents 

which is impractical considering that the 

definition of a road traffic fatality often includes 

deaths that occur up to 30 days after the event 

(Peden et al., 2004). 

 

While road traffic fatality data might be more 

readily available than road traffic accident data, 

the number of road traffic fatality events is 

significantly lower compared to road accidents or 

non-events. Events that occur at a significantly 
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lower rate compared to common events are 

referred to as rare events (Lazarević et al., 2004) 

and introduce several modeling challenges that 

must be explicitly considered (Weiss, 2004). For 

instance, measuring the performance of a road 

traffic prediction model using accuracy is 

inappropriate, as it is straightforward to maximize 

accuracy by simply predicting non-events. 

Maalouf & Trafalis (2011) suggested using 

sampling techniques to artificially create a more 

balanced training dataset, thereby reducing the 

likelihood of the model simply predicting the 

majority event to optimize performance. 

Similarly, the loss function used to optimize the 

parameters of error-based models can also be 

adjusted by assigning larger weights to the 

minority class.  

 

Although road traffic accident data is primarily 

used and essential for predicting road traffic 

accidents, including exposure data can lead to an 

improved understanding of these accidents and 

consequently improved models (Mikkonen & 

Peltola, 1997). Mikkonen & Peltola (1997) 

suggested that information such as population, the 

number of registered vehicles, and road hours can 

enhance road safety. 

 

With the emergence of big data and the Internet of 

Things, various other sources of exposure data 

have been considered, such as weather data (Bao 

et al., 2019; Moosavi et al., 2019), human mobility 

data (Bao et al., 2019; Chen et al., 2016; Moosavi 

et al., 2019) and road network data (Bao et al., 

2019; Moosavi et al., 2019). Like road accident 

data, however, the timely availability of these 

features must be considered. For instance, Chen et 

al. (2016)  suggested using global positioning 

system (GPS) measurements to improve the 

accuracy of road traffic accident predictions. 

While the approach recommended by Chen et al. 

(2016), showed promising results, the approach 

required the GPS data of 1.6 million users. 

Collecting such extensive data would require an 

ongoing effort, as the predictions of the road 

accident model are based on real-time GPS data.  

 

Given the potential range of exposure data, 

various types of road traffic accident predictive 

modeling approaches have been developed. These 

modeling approaches aim to learn the underlying 

spatial and temporal patterns to generate accurate 

predictions. 

 

Historically, predicting the frequency of road 

traffic crashes has been attempted using statistical 

methods (Lord & Mannering, 2010). To improve 

the accuracy of these statistical models, several 

types of regression models have been proposed 

that specifically aim to address under-dispersion 

and/or over-dispersion (Abdulhafedh, 2017; Lord 

& Mannering, 2010). These approaches often 

perform poorly, which Yuan et al. (2018) attribute 

to the use of limited data and too simple modeling 

approaches that do cannot account for the 

properties of the underlying data, such as spatial 

heterogeneity. 

 

Machine learning models can potentially address 

the limitations of statistical techniques in 

modeling road traffic accidents, such as 

assumptions about data distribution that may not 

hold and consequently lead to erroneous 

predictions (Chang & Chen, 2005). To establish 

the appropriateness of machine learning for 

predicting road traffic accidents, Silva et al. 

(2020) conducted a systematic literature review, 

covering machine learning approaches published 

from 2003 to 2020. Several of the identified 

studies found that machine learning based 

approaches are superior to traditional statistical 

models in predicting the number of road 

accidents, their severity, or a combination of both 

(Silva et al., 2020). The papers reviewed did not 

use the same dataset or consistent evaluation 

metrices, which makes it difficult to establish 

what the most appropriate machine learning 

technique is (Silva et al., 2020).  

 

A significant shortcoming of the studies reviewed 

by Silva et al. (2020) is that most were confined 

to a single road segment or a small area. This 

limitation prevents the modeling or assessment of 

spatial heterogeneity, which is crucial in 

understanding the broader factors influencing 

road traffic fatalities (Yuan et al., 2018).  

 

Limited research has employed traditional 

machine learning models over large areas. Parra et 

al. (2020) utilized the H3 hexagon technique 

(Brodsky, 2018) to spatially aggregate road traffic 

accident data. To incorporate, temporal data, the 

month, day of the month and the time of the day 

were included. Traditional machine learning 

models were then used to predict road traffic 

accidents across time and space.  Road traffic 

accidents have also been modeled using 

Geographic Information System (GIS) 

techniques, which specifically consider spatial 

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 141 of 270



 

 

properties. For instance, Al-Dogom et al. (2019) 

analyzed traffic accidents that occurred in the 

United Kingdom to identify potential hotspots. 

Identifying these road traffic accident hotspots 

can assist in implementing targeted risk reduction 

strategies (Zahran et al., 2021). Historically, GIS 

techniques have had limited success when applied 

to small areas (Zahran et al., 2021), but have been 

more effective for larger areas (Al-Dogom et al., 

2019; Nteziyaremye, 2018).  

 

Very few studies have considered predicting road 

traffic fatalities over a short period, mainly due to 

the limitations of traditional models in explaining 

complex, non-linear and hierarchical data (Bao et 

al., 2019). Deep learning models have the 

potential to overcome these limitations by 

effectively capturing intricate patterns in tabular 

and non-tabular data. Chen et al. (2016) were 

among the first to use deep learning to predict road 

traffic accidents. However, as previously 

discussed their approach relies on human mobility 

data which may not be readily available.  To 

model non-linear temporal patterns Ren et al. 

(2018), Yuan et al. (2018) and Bao et al. (2019) 

suggested using sequential deep learning models. 

While effective, using sequential models assumes 

that data is readily available.  

 

In South Africa, limited research has been 

conducted on predicting road traffic fatalities, 

most studies tend to focus on causal factors  (Du 

Toit, 2022). Causal studies suggest that both 

temporal and spatial relationships exist in South 

Africa (Nteziyaremye, 2018). While in terms of 

predictive modelling, Twala (2014), Mokoatle et 

al. (2019) and Du Toit (2022) have investigated 

road traffic accident severity classification. Rather 

than predicting where and when road fatalities 

will occur, these approaches aim to establish the 

severity of a road traffic accident. In this section, 

multiple approaches that can be used to predict 

road traffic fatalities were reviewed within the 

context of South Africa. Establishing clear 

definitions of the target feature and considering 

data availability is crucial for effective predictive 

modeling of road traffic fatalities. Several 

historical studies overlooked data availability 

aspects, making the approaches impractical in the 

context of this study.  

 

To accurately predict road traffic fatalities, spatial 

and temporal patterns must be considered. In 

general, the related work suggests that these 

patterns are complex, requiring advanced 

modeling techniques such as deep learning. In the 

context of South Africa, limited research has been 

conducted on predicting road traffic fatalities. 

Considering these observations, this study aims to 

valuate whether road traffic fatalities can be 

predicted across time and space for the Western 

Cape province. Since it is unclear which modeling 

approach is best suited, both traditional machine 

learning models and deep learning models will be 

considered. 

 

3. Methodology 

This section outlines the methodology used to 

predict road traffic fatalities in the Western Cape. 

The methdology involves sourcing road fatality 

data, road network data, and weather data, which 

are then mapped to a hexagonal representation of 

the Western Cape using the H3 segmentation 

approach (Brodsky, 2018). The data is prepared 

for modeling by dividing the H3 segmented data 

into subsets and converting the data into both 

vector and raster representations. Vector data is 

utilized to develop traditional machine learning 

models, while raster-based data is used to develop 

deep learning models. Finally, the measures used 

to evaluate the performance of the road fatality 

prediction models are discussed. 

 

3.1 Data Collection 

Road traffic fatality data for the Western Cape 

was sourced from the Forensic Pathology Service. 

The dataset contained a row for each fatality. 

Fatalities related to the same traffic accident were 

grouped and considered a single binary event.  

Weather data was sourced from 62 weather 

stations and included average daily precipitation, 

temperature, visibility, and wind speed 

measurements. Missing and erroneous weather 

values were imputed using the closest reading 

from the same weather station. Road network data 

was assumed to be static and sourced from 

OpenStreetMap using the OSMnx (Boeing, 2017) 

Python package. The road network data retrieved 

is structured as a graph, where an edge represents 

a road segment, and each node represents either a 

dead-end or an intersection of roads. The 

maximum speed limit was missing for 

approximately 61.84% of the road segments. For 

segments with missing speed limits, the maximum 

speed limit was inferred using OSMnx, which 

assumes that similar roads have similar maximum 

speeds. Figure 1 shows an example of the road 

fatality event data, the location of weather 

measurements and the extent of the road traffic 

network of the Western Cape. 
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3.2 Data Aggregation 

Before aggregating the road fatality data, the 

weather data and the road network data, the 

Western Cape Province was segmented using the 

H3 segmentation approach (Brodsky, 2018). The 

area of each hexagon obtained is approximately 

36 km2, with an average edge length of 8.54 km. 

The road fatality data was mapped to hexagons 

based on the latitude and longitude coordinates of 

the road fatality event. In urban areas, when the 

coordinates of a road fatality were unavailable, the 

fatality can be geo-coded because the margin for 

location error is relatively low. A similar approach 

cannot be used for rural areas. Fatalities in rural 

areas will be geo-coded to the nearest town which 

is imprecise, as the actual event may have 

occurred several dozen kilometres from the 

geocoded result. As a result, the research team 

conducted an exercise to ensure the validity and 

precision of the location information by cross-

correlating the fatal event with government 

vehicle telemetry position data. This exercise does 

not fall within the scope of this paper. 

 

Weather data was only collected from 62 weather 

stations, which is significantly fewer than the 

number of hexagons in the H3 grid. To assign 

weather data to the unsampled hexagons, spatial 

interpolation using the kriging method (Oliver & 

Webster, 1990) was used. The kriging method 

interpolates values based on a weighted 

combination of observed values.  

 

 

 

Since weather tends to decrease smoothly and 

continuously as distance increases a Gaussian 

variogram model was selected. After spatial 

interpolation, outliers were identified based on 

threshold values and corrected using backward 

fill.  

 

Road network data was assigned to hexagons in a 

similar manner as road fatality data. After the road 

network data was assigned to hexagons, 

aggregated road statistics, such as the average 

maximum speed were calculated and assigned to 

each hexagon. Hexagons without any public road 

network data were not further considered. The 

spatial aggregation of data is similar to the 

approach used by Parra et al. (2020), but 

considered significantly smaller areas and also 

incorporates road network data. 

 

3.4 Temporal Analysis 

Various temporal patterns were observed in road 

traffic accidents covering the period from January 

2019 to December 2022. In general, a sharp 

decrease in the number of fatal events was evident 

between January 2020 and July 2020. This 

decrease in road fatalities is mainly attributed to 

the travel restrictions imposed by the government 

during this period to curb the spread of 

coronavirus disease 2019 (COVID-19).  

 

The total number of fatal events remained 

relatively consistent between Monday and 

Thursday, increased on Fridays, and peaked 

during weekends. The mean number of fatal 

events per day type was 1.62 for festive days, 1.37 

for Friday to Sunday, and 1.26 for weekdays from 

Monday to Thursday. To account for the typical 

increase in traffic flow around holidays, the days 

before and after a holiday were also considered 

festive days. Road fatalities peaked around 7 am 

and 8 pm. The evening peak in fatalities was 

specifically high during weekends (Figure 2).  

The observed temporal patterns suggested the 

need for careful temporal data aggregation. Since 

it was not explicitly clear how granular temporal 

aggregation should be performed, four different 

levels of temporal aggregation were considered 

   

(a) Example of road fatality 

events 

(b)  Weather measurement 

locations 

(c) Road network of the 

Western Cape 

Figure 1: Raw data collected 
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namely: (i) daily temporal aggregation over 4-

hour timeslots, (ii) daily temporal aggregation 

over 8-hour timeslots, (iii) type of day aggregation 

over 4-hour timeslots and (iv) type of day 

aggregation over 8-hour timeslots. Here type of 

day aggregation refers to aggregation by festive 

days, Monday to Thursday and Friday to Sunday.  

 

3.5 Spatial Analysis 

Road fatalities in the Western Cape were 

dispersed across both rural and urban areas, with 

approximately 826 road fatality events in the City 

of Cape Town, the only metropolitan municipality 

in the region. The number of road fatalities in the 

five district municipalities in the Western Cape 

ranged between 49 and 155 events. A spatial 

correlation analysis revealed both global and local 

spatial autocorrelation of road fatalities. 

 

The global spatial autocorrelation was assessed 

using Moran’s I value (Moran, 1950). Moran’s I 

value ranges from negative one to positive one 

and quantifies how similar or dissimilar values of 

a variable are across a geographic space. A 

Moran’s I value of 0.82 with a p-value of 0.001 

was obtained which indicated that hexagons with 

a high number of road fatality events are located 

close to hexagons with a high number of road 

fatality events. The same holds for hexagons with 

a low number of road fatality events. To determine 

whether specific hexagons belong to a cluster and 

the nature of the cluster, the local indicators of 

spatial association (LISA) algorithm (Anselin, 

1995) was used. Several groups of high-fatality 

hotspots and low-fatality hotspots were observed 

when a p-value of 0.05 was used to determine 

significance (Figure 3). Hexagons assigned to the 

high fatality cluster typically occurred in 

population-dense areas or within cities.  

 
Figure 3: Spatial dispersion of road fatality 

events 

 

3.6 Data Preparation 

Given a hexagon 𝐻 and a time frame 𝑇, the 

modeling task is to predict whether a road fatality 

occurred in 𝐻 and within 𝑇. The descriptive 

features consist of (i) global and local time 

features, (ii) weather features and (iii) road 

network features.  

 

For vector-based modeling, each hexagon and 

time slice is considered an instance. For raster-

based modeling, the vector-based data is 

rasterized at a resolution of (-0.03, 0.03), creating 

a separate image encoding for each non-global 

feature, including the target feature. To 

consistently compare vector-based modeling with 

raster-based modeling, raster-based predictions 

are re-projected to the original hexagons. The 

aggregated dataset is divided into three non-

overlapping subsets using out-of-time sampling to 

prevent data leakage. The training dataset covers 

 

Figure 2: Temporal dispersion of road fatality events 
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the period from 18 November 2019 to 31 

December 2021, the validation dataset spans from 

1 January 2022 to 31 August 2022, and the test 

dataset includes data from 1 September 2022 to 28 

February 2023. 

 

3.7 Machine learning models  

The following vector-based models were 

considered: (i) a logistic regression model with L2 

regularization, (ii) a random forest model with a 

maximum depth of five, a minimum sample split 

set to 13, and a maximum of 204 trees, and (iii) a 

Naive Bayes model. Since road fatality events are 

rare, artificially increasing the rare events using 

the synthetic minority over-sampling technique 

(SMOTE) (Chawla et al., 2002) were considered. 

SMOTE was specifically considered since Du 

Toit (2022) obtained the best classification of road 

accident severity in South Africa when SMOTE 

was used.  

 

Two raster-based models were considered: (i) an 

adapted U-Net (Ronneberger et al., 2015) model 

and a custom road fatality fully convolutional 

neural network (RFFCNN). Both raster-based 

models accept two inputs: spatial information 

represented as a raster where each feature 

represents a channel, and spatially independent 

information represented as a vector. The raster-

based models were developed and implemented 

using Pytorch. Experiments were conducted in 

Python 3.9.16 in a Windows 10 operating system 

with 32 GB RAM and a Nvidia GeForce RTX 

3070 GPU to accelerate the deep learning 

procedure. Both the adapted U-Net and the 

RFFCNN averaged 15-20 seconds per epoch. 

 

The adapted U-Net model consists of an encoder, 

a bottleneck and a decoder, each composed of 

convolution blocks which consist of a two-

dimensional (2D) convolutional layer, batch 

normalisation, rectified linear unit (ReLU) 

activation, and skip connections. The encoder 

consists of four convolution blocks, each followed 

by 2D max pooling. Parameters for the network 

are in line with the architecture outline described 

in (Ronneberger et al., 2015). The tabular data is 

passed through a feed-forward fully connected 

network which consists of three dense layers with 

ReLU activations and a dropout layer with a 

probability of 50%. The first two dense layers 

output 32 and 64 features, respectively. The final 

dense layer produces a vector with dimensions 

that match the output of the encoder.  

The output of the feed-forward fully connected 

network is reshaped and joined with the output of 

the encoder. The decoder performs up-sampling 

using transposed 2D convolution layers with a 

stride of two. The kernel sizes and padding of the 

2D convolution layers are selected such that the 

size of the feature maps passed from the skip-

connected is the same as the up-sampled feature 

maps. Transpose convolution layers as opposed to 

traditional upsampling are employed in the 

decoder, as transpose convolution layers have 

parameters that can be learned. The adapted U-

Net, produces a raster with predictions, matching 

the input raster. 

 

The RFFCNN is a straightforward fully 

convolutional neural network, inspired by similar 

deep learning architectures in literature but 

without an encoder-decoder approach. Using a 

simpler model helps prevent memorization and 

encourages learning, as it has significantly fewer 

parameters. The RFFCNN processes spatial 

features through four convolutional layers,  

gradually increasing channel depth, i.e., 32, 64, 

128, 256, with batch normalization. Increasing 

depth is a common practice in deep learning and 

is more efficient in terms of parameter usage.  

 

Tabular features are processed by a feed-forward 

fully connected neural network of five dense 

layers, gradually increasing in output features, 

i.e., 32, 64, 128, 256, with ReLU and dropout at 

50%. The final dense layer produces a vector with 

dimensions equal to the output of the fourth 

convolution layer. The outputs of the fully 

connected network are concatenated with the 

output of the fourth convolutional layer. The 

concatenated values are then passed through a 

final convolutional layer with a single channel, a 

kernel size of one, and zero padding, producing a 

single raster image with predictions. 

 

Both the adapted U-Net and RFFCNN are trained 

using binary cross entropy with logit loss. To 

handle class imbalance the weight of positive 

event is set to 1750:1. The models were trained 

using the adaptive moment estimation (Adam) 

optimizer (Kingma & Ba, 2014), for a maximum 

of 40 epochs with a batch size of 3. To prevent 

overfitting, training was stopped when the 

validation loss did not decrease for three 

consecutive epochs. After training a model was 

reset to the parameter values associated with the 

smallest validation loss.  
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Both the vector-based models and raster-based 

models are compared against the baseline model 

to determine if they provide significant 

improvements over the intuitive historical average 

approach. The predictions of the baseline model 

are based on historical fatality events at the same 

hexagon, with a lag of one year. This approach is 

similar to the MEDIC model developed by Zhou 

& Matteson (2015), which averages historical 

counts over 4 to 5 years to establish ambulance 

demand.  

 

3.8 Evaluation measures 

To evaluate the effectiveness of the models 

considered, multiple evaluation metrics are 

employed. Precision is calculated by determining 

the percentage of correctly predicted fatal events 

out of all predicted fatal events. Recall is 

calculated by determining the percentage of 

correctly predicted fatal events out of all actual 

fatal events. The F1-score, which is the harmonic 

mean of precision and recall, provides a balanced 

measure of performance. Additionally, the Area 

Under the Receiver Operating Characteristic 

Curve (AUC-ROC) is used to establish the 

model's ability to distinguish between fatal and 

non-fatal events. All four performance metrics 

range from zero to one, with larger values 

indicating better performance. In the case of 

AUC-ROC, a value of 0.5 corresponds to a model 

that cannot differentiate between fatal and non-

fatal events. 

 

In the context of road traffic fatalities, maximizing 

recall is crucial since it measures the ability of the 

model to identify actual road traffic fatal events. 

High recall ensures that most fatal events are 

detected, which is vital for effective intervention 

and prevention. High recall paired with low 

precision can however lead to the generation of 

multiple false positives, which means that fatal 

events are predicted where there are none. 

Consequently, the limited resources available will 

be used ineffectively.  

 

Although all four of the metrices considered are 

reported, the different algorithms are ranked using 

the AUC-ROC performance since the AUC-ROC 

provides a more holistic view of the model’s 

effectiveness in distinguishing between fatal and 

non-fatal events.  

 

 

 

 

4. Results and discussion 

The performance of the models on the validation 

dataset is provided in Table 1. Table 1 excludes 

the Random Forest model and the Logistic 

Regression model trained without SMOTE, as 

they never predicted any road fatality events. 

 

The baseline model outperformed all other models 

in terms of precision for all four-time 

aggregations considered. However, the recall of 

the baseline model was considerably worse 

compared to the other models. The low number of 

predictions made by the baseline model suggests 

that no learning is performed - historical average 

is simply used. Consequently, it cannot 

extrapolate learnings from one area and apply 

these learnings to other areas. The Naïve Bayes 

model without SMOTE consistently achieved the 

second-highest precision across the various 

scenarios. However, this model also had the 

second lowest recall, meaning it missed many 

actual fatal events. Since road traffic fatalities are 

rare, the probability of predicting road traffic 

fatalities is inherently low, which leads to fewer 

rare event predictions. Additionally, using 

SMOTE did not lead to significant improvements 

in the performance of the models. The Logistic 

Regression model using SMOTE achieved the 

highest recall scores for all experiments and was 

typically followed by the Random Forest model 

using SMOTE.  

 

In terms of deep-learning models, the RFFCNN 

achieved higher AUC-ROC values than the U-Net 

model in all scenarios except for the most granular 

aggregation. For the most granular time 

aggregation, the U-Net achieved the best AUC-

ROC. Each of the four different time aggregations 

had a different model which achieved the highest 

AUC-ROC. The U-Net model performed the best 

on the daily 4-hour aggregation, the Logistic 

Regression model with SMOTE performed the 

best on the daily 8-hour aggregation, the Random 

Forest with SMOTE performed the best on the 

weekday 4- hour aggregation, and the RFFCNN 

achieved the highest AUC-ROC on the weekday 

8-hour aggregation. The models performed 

similarly on the test dataset, indicating that they 

do not simply memorize the historical values but 

instead generalize to new data.    
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While the metrics considered this far capture the 

global performance of each model, they fail to 

reveal biases in predictions. For instance, a model 

may perform well overall but still exhibit biases 

towards certain locations (Yuan et al., 2018). To 

examine the potential biases of each model, the 

predictions of the different models for similar 

timeframes were compared (Figure 4).  

The Naive Bayes model typically repeats 

predictions, often focusing on areas within the 

City of Cape Town metropolitan area across 

different day types and shifts. This behaviour 

explains its relatively high precision, as it makes 

fewer predictions outside this area. The Logistic 

Regression with SMOTE offered slight 

variability, with predictions often targeting 

national and provincial routes during festive days.  

Similarly, the Random Forest model also 

demonstrated slight variability, highlighting areas 

of high risk. In contrast, the deep learning models 

exhibited shifts in predictions based on temporal 

elements, with noticeable variations across 

different shifts and day types. An example of the 

predictions of the different models is illustrated in 

Figure 4 for a festive day during the time 20:00 to 

24:00 with predictions indicated in yellow. 

During this timeslot, only one road fatality event 

occurred. Apart from manually examining 

predictions, the performance of models must also 

be compared at a district level. In the case of the 

Western Province, the majority of road fatalities 

occurred in the City of Cape Town which can bias 

the predictions towards this district. Performing a 

district-level analysis supported the insights 

derived from examining individual predictions. It 

was particularly evident that the Naïve Bayes 

model did not generate predictions for more than 

one district.  

 

Table 1: Comparison of model performance on the test subset 

Model Day Time Precision Recall F1-score AUC-ROC 

U-Net Daily 4-hour 0.60 70.21 1.18 88.16 

Random Forest* Daily 4-hour 0.47 76.43 0.93 84.35 

Logistic 

regression* 
Daily 4-hour 0.25 82.51 0.51 83.63 

RFCNN Daily 4-hour 0.64 70.55 1.28 82.73 

Naïve Bayes* Daily 4-hour 1.32 59.32 2.58 78.61 

Naïve Bayes Daily 4-hour 1.47 58.17 2.86 78.16 

Baseline Daily 4-hour 2.45 2.38 2.42 - 

Logistic 

regression* 
Daily 8-hour 0.29 79.85 0.58 83.85 

Random Forest* Daily 8-hour 0.51 72.62 1.01 83.21 

RFCNN Daily 8-hour 0.58 66.09 1.15 80.60 

Naïve Bayes* Daily 8-hour 1.21 59.31 2.38 78.60 

Naïve Bayes Daily 8-hour 1.37 58.17 2.67 78.17 

U-Net Daily 8-hour 0.72 59.93 1.41 78.17 

Baseline Daily 8-hour 2.65 2.61 2.63 - 

Random Forest* Weekly 4-hour 0.60 73.00 1.20 83.44 

Logistic 

regression* 
Weekly 4-hour 0.37 75.66 0.74 82.70 

RFCNN Weekly 4-hour 0.69 68.51 1.37 81.81 

U-Net Weekly 4-hour 0.77 64.64 1.52 80.25 

Naïve Bayes* Weekly 4-hour 1.44 59.70 2.81 78.81 

Naïve Bayes Weekly 4-hour 1.58 57.80 3.06 77.98 

Baseline Weekly 4-hour 2.92 2.83 2.89 - 

RFCNN Weekly 8-hour 0.72 73.27 1.44 83.42 

Random Forest* Weekly 8-hour 0.73 72.24 1.45 82.80 

Logistic 

regression* 
Weekly 8-hour 0.41 76.43 0.82 81.95 

U-Net Weekly 8-hour 0.60 70.79 1.18 81.62 

Naïve Bayes* Weekly 8-hour 1.93 59.70 3.73 78.82 

Naïve Bayes Weekly 8-hour 2.07 57.80 4.00 77.97 

Baseline Weekly 8-hour 3.93 3.52 3.72 - 

* Models trained on a dataset sampled using the Synthetic Minority Over-sampling Technique (SMOTE) 
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5. Practical Implementation for Authorities 

The road fatality predictions model is intended to 

be used as a decision support tool for intervention 

planning by traffic law enforcement. When used, 

operational bias must be specifically considered. 

For instance, when traffic law enforcement 

identifies a specific hotspot area and applies 

constant high amounts of surveillance in that area, 

the model may start to predict fatalities in a 

different area and not the original hotspot area. 

This does however not imply that law surveillance 

must be stopped in the area. To avoid the 

operational risk of reallocating resources, traffic 

operational literature must be incorporated in 

conjunction with road traffic accident literature.  

 

For any given period, the model predicts many 

possible fatality locations. It is not feasible for 

traffic law enforcement to intervene at all 

locations, so we suggest future work on an 

optimization layer to determine the most effective 

allocation of limited traffic law enforcement 

resources to the predicted locations.  Rosenfeld et 

al. (2017) formulated the traffic enforcement as 

∑ ∑ 𝑝𝑡,ℎ × (1 − 𝐹(𝑜𝑡,ℎ))ℎ𝑡 , where p is the 

probability of a fatal event in a hexagon and F 

calculates the effectiveness of an intervention o in 

a hexagon h in a timeslot t. This optimization 

approach, visualized in Figure 5,  can take into 

account the type of intervention, given constraints 

such as the number of officers available, distance 

of location, and mandatory operations.   The arcs 

in Figure 5 are placed from each traffic centre to 

an accident hotspot predicted by the fatality 

model, suggesting specific interventions with 

each colour.  

Finally, road traffic fatalities models need to be 

deployed and researched with a focus on ethical 

artificial intelligence. RTFs in South Africa 

disproportionately affect lower-income groups. 

This is partly due to systemic issues, such as the 

negative historical Apartheid spatial planning 

policies. The disproportionate representation of 

some groups in the historical data may cause bias  

in a model, and decision-making based on these 

models may cause adverse impact. Model 

reproducibility,  explainability, and traceability 

are therefore critical to mitigating bias. 

 
Figure 5: Optimizing operational interventions 

with predictions 

 

6. Conclusion 

The primary limitation of this study was data, in 

quantity and quality of data. Training a spatio-

temporal model solely on road traffic fatalities, a 

subset of road traffic accidents resulted in a highly 

unbalanced dataset. We believe that increasing the 

dataset and expanding it to include all crash data 

would improve results, particularly precision. 

Likewise, using more granular exposure data 

could improve the results, especially the weather 

data which was aggregated daily. Despite these 

data limitations, the results are promising and 

indicate the potential for improved predictive 

accuracy with enhanced data collection and 

integration efforts. When selecting a model for 

implementation, it is suggested to carefully 

examine the predictions since models with similar 

global performance can behave very differently 

due to biases and the data available. For instance, 

if a government entity has access to a pool of 

resources, data streams, and clean data, the deep 

learning approach would be suggested at high 

levels of temporal granularity. On the other hand, 

when resources are limited and predictions are 

required on a less frequent basis, a Random Forest 

model could be more useful than relying on 

historical averages. 

     

Logistic 

Regression with 

SMOTE 

Random Forest  

with SMOTE 

Naïve Bayes  

with SMOTE 

U-Net RFFCNN 

Figure 4: Comparison of model predictions for a festive day during the timeframe 20:00 to 24:00 
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