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Abstract 

The use of Convolutional Neural Networks 

(CNNs) for image classification is well-

established in defect detection within 

manufacturing environments. However, their 

application in assembly processes remains 

underexplored. This study investigates the 

effectiveness of using relatively smaller CNNs for 

detecting assembly defects by testing multiple 

existing pre-trained CNNs and a custom CNN on 

a dataset of model train seat assembly images. The 

dataset includes common assembly defects such 

as missing, rotated, and swapped parts. Despite 

implementing various data augmentation and 

image processing techniques, such as cropping, 

normalization, and image transforms, and making 

several modifications to the models, the existing 

techniques struggled to accurately predict defects 

while providing the correct rationale for their 

predictions. The Grad-CAM analysis revealed 

that the models often focused on irrelevant 

features, highlighting the challenges of defect 

detection in complex assembly environments. 

These findings indicate the need for more robust 

machine learning approaches capable of handling 

high levels of noise and variations typical of real-

world assembly conditions. This study 

underscores the limitations of current CNN-based 

defect detection methods in uncontrolled 

assembly settings and the necessity for further 

research to develop more reliable solutions. 

 

Keywords: defect detection, convolutional neural 

networks, assembly, image classification 

 

1. Introduction 

Quality control is a crucial part of the 

manufacturing sector, as defects can lead to 

inferior products, customer dissatisfaction, and 

damage to a company's reputation. One of the 

primary methods used to perform quality control 

in the manufacturing sector is visual inspection. 

Visual inspection is a non-destructive quality 

control method which involves the visual 

assessment of a product against specific criteria 

such as surface finish, dimensions, and colour 

consistency. 

 

Traditionally, visual inspection is performed 

manually, requiring human inspectors to examine 

products for defects or irregularities using the 

naked eye or sometimes with the aid of 

magnifying tools or other equipment (See, 2012). 

Manual visual quality inspection is however 

expensive, subjective, prone to mistakes, and can 

cause occupational health issues such as eye strain 

and labour fatigue, leading to financial losses and 

wasted man-hours (Boby et al., 2011). Thus, the 

development and deployment of automated visual 

defect detection systems are highly advantageous 

for improving efficiency, reducing costs, 

enhancing accuracy, and promoting worker safety 

in manufacturing environments. 

 

The development of artificial intelligence 

algorithms and the emergence of affordable 

devices capable of running these algorithms offer 

the opportunity to deploy automated visual 

inspection in the manufacturing environment at 

scale (Würschinger et al., 2020). These systems 

have however mostly been developed for 

individual parts or straightforward use cases such 

as surface inspection. In surface inspection, the 

environment can typically be controlled to avoid 

or minimise any image variations not attributed to 

defects. 

 

In contrast to surface inspection, when visual 

inspection is performed on assembly lines 

multiple interconnected parts must be inspected 

on a large scale which often means that images 

captured contain non-defect related variations 

such as background noise. Such noise can 

introduce unwanted features into the dataset, 
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leading to false positives in defect detection. 

Assemblies flagged for defects need reworking, 

increasing overall manufacturing time. 

Conversely, noise in the dataset can also cause 

defects to be missed entirely, leading to problems 

down the assembly line or undetected defective 

final products. Therefore, implementing a reliable 

and trustworthy machine learning approach to 

identify defects in complex assembly 

environments remains a high priority. 

 

Though previous studies on defect detection on 

more simple parts have shown promising results, 

there remains a gap for them to be tested in the 

assembly environment. This study aims to 

establish whether existing machine learning 

technologies used to develop automated visual 

defect detection systems for parts or simple tasks 

can be used for assembly defect detection. 

Specifically, the research seeks to determine if 

these algorithms can distinguish between defect 

and non-defect assemblies in a complex 

environment with high levels of noise and 

variations. 

 

Towards this extent, a dataset of ensembled model 

trains is collected which includes three types of 

common assembly defects: missing parts, 

wrongly orientated parts and swapped parts. To 

establish whether machine learning algorithms 

learn to truly distinguish between defect and non-

defect trains, multiple different convolutional 

neural networks is trained using a range of 

commonly used practises such as data 

augmentation and pre-training. Even though 

extensive approaches are evaluated, none of the 

approaches differentiate between defect and non-

defect trains entirely based on the defects. Our 

findings highlight the need for further research 

into the development of improved algorithms. 

 

In this study, we collected a dataset of top-down 

photos of a model train using a webcam. The 

seating arrangement of the model train was altered 

to simulate various assembly defects. A model 

train was chosen for its simplicity and cost 

effectiveness in generating defects. This assembly 

example is representative of real-world scenarios, 

as it contains many false signals and considers 

various types of defects simultaneously. Due to 

the wide variety of assembly defects that can 

occur, not all types were tested in this study, but 

the most common types of assembly defects were 

used as examples in the dataset, including missing 

parts, wrongly orientated parts (rotated 90° and 

180°), and swapped parts. Subsequently this 

dataset was used to train a custom CNN for defect 

detection. Various strategies, including data 

augmentation, machine learning model 

adjustments, and image processing, were 

employed in attempt to refine the model's 

predictions, ensuring it focuses on the appropriate 

features of each train. Additionally, pre-trained 

models, including ResNet-50 (Koonce, 2021), 

EfficientNetV2_Small_Weights (Tan & Le, 

2021), and DenseNet-161 (Dhillon & Verma, 

2022) were tested and compared to the 

performance of our custom CNN model. We 

wanted to see whether our custom CNN model 

could outperform these pre-trained models and 

better distinguish between false signals and true 

defects. 

 

This paper proceeds as follows. In the next 

section, the related works are covered. Section 3 

describes the methodology that was followed 

while section 4 describes the experimental setup. 

The results and discussion sections are combined 

to form one section 4 due to the steps of the study 

being conducted iteratively. Section 5 concludes 

the paper. 

 

2. Related Works 

Convolutional Neural Networks (CNNs) have 

been widely used for defect detection on products. 

They play a crucial role in automated feature 

extraction by identifying boundaries, learning 

hierarchical features, and enhancing accuracy. 

CNNs detect edges within images, essential for 

object detection, segmentation, and feature 

extraction (Patel, 2024). Deep CNN architectures 

(e.g. VGG (Varshney, 2020), ResNet (He et al., 

2016), and Inception (Alom et al., 2021)) 

automatically learn spatially relevant features 

from large datasets such as ImageNet (Deng et al., 

2009). Pre-trained CNNs facilitate transfer 

learning, remaining effective even when applied 

to different domains(Nazare et al., 2018). Feature 

extraction reduces image data dimensionality, 

preserving essential information and improving 

computational efficiency (Kumar & Bhatia, 

2014). Additionally, CNNs enhance image 

processing tasks by isolating crucial features and 

reducing noise (Kumar & Bhatia, 2014; Patel, 

2024). 

 

While CNNs are effective, they can sometimes 

learn false signals through a phenomenon known 

as Shortcut Learning (Geirhos et al., 2020), which 

may introduce more problems in assembly defect 
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detection due to the complexity of the 

environment. For instance, a model might rely on 

background clues for classification if objects are 

consistently placed against specific backgrounds, 

rather than focusing on the objects themselves. 

Similarly, if particular colours or textures are 

consistently present in the training images of a 

certain class, the model might incorrectly 

associate these superficial features with that class. 

Additionally, metadata artifacts such as image 

size or compression artifacts, if correlated with the 

labels, can also serve as shortcuts for the model. 

Mitigation strategies include data augmentation, 

adversarial training, and better data collection, all 

of which will be addressed in subsequent sections. 

 

Cumbajin et al. (2023) conducted a systematic 

review on Deep Learning with CNNs applied to 

surface defect detection. They reviewed 62 papers 

and determined that the most common approach 

that was used in these papers was image 

classification. Of these studies, 32% used 

unmodified CNNs, while the rest created custom 

CNNs based on other networks. Data 

augmentation and transfer learning were also 

common techniques used in these studies. 

Notably, 66% of the datasets were private and 

most studies employed industrial cameras 

requiring specific lighting conditions and 

specialized lenses (Cumbajin et al., 2023). These 

studies also suggest that image classification is the 

most common approach for defect detection, 

hence its effectiveness in assembly environments 

being explored in our study. Additionally, data 

augmentation and transfer learning are also 

considered, since many papers make use of these 

techniques. All the papers reviewed by Cumbajin 

et al. (2023) focus on surface defect detection 

rather than assembly defect detection, and among 

the few studies on assembly defect detection using 

image classification, such as those by Burresi et 

al. (2021), Arjun & Mirnalinee (2016), Guo et al. 

(2020), and Weiss et al. (2024), most either 

consider only one type of defect or do not address 

significant false signals that could lead to false 

positives. 

 

Other studies by Frustaci et al. (2020), Birari et al. 

(2023), Pierleoni et al. (2020), Rusli & Luscher 

(2018), and Mazzetto et al. (2019) focused on 

experiments conducted in specifically defined and 

controlled environments, with minimal noise or 

variation and meticulously controlled lighting 

conditions. The extensive systematic literature 

review by Panzer & Bender (2022) found that all 

the studies they examined were conducted under 

similarly controlled conditions with little to no 

variation or noise. They emphasized that 

assembly tasks benefit from confined and 

segregated environments, which limit hurdles and 

mitigate the risks of external factors influencing 

operations. Herakovic (2010) suggests that 

backlighting can reduce the impact of lighting 

conditions on machine vision tasks. However, this 

approach is not always viable due to the diverse 

conditions of assembly tasks, as in our study, 

where the objects of focus do not protrude from 

the main assembly. 

 

A gap in the literature was identified regarding the 

application of CNNs in assembly environments 

with high levels of noise and variations. Previous 

studies typically focused on detecting defects on 

surfaces of similar parts within the assembly in 

controlled environments, where false signals do 

not influence the models' decision-making. These 

controlled settings are considered too 

straightforward for the application we aim to test. 

Our study builds on this previous work by 

investigating the implementation of existing 

image classification methods in uncontrolled 

assembly environments, where external factors 

cannot always be mitigated, and the data may 

contain false signals. 

 

3. Methodology 

In practice, defect detection in assembly should 

ideally not significantly disrupt the production 

line. Thus, the goal is to explore the possibility of 

developing a machine learning model that can 

later be implemented on a small, fast, stand-alone 

device capable of operating on an Internet-of-

Things (IoT) infrastructure, which often leads to 

it being a more cost-effective solution. For this 

reason, a standard webcam (shown in Figure 2) is 

used to capture images for the dataset, and a 

custom CNN is developed to keep the model as 

small as possible. 

 

The proposed system involves several sequential 

steps: data acquisition/image capturing, data 

augmentation and machine learning model 

adjustments, image pre-processing, Grad-CAM 

accuracy measurement, and defect detection. 

These processes are summarised in Figure 1 and 

discussed in more detail in the subsequent 

sections. 
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Figure 1. Iterative process flow diagram of 

proposed system 

 

Data Augmentation 

The dataset of images was captured using the 

webcam setup shown in Figure 2. This dataset is 

made available to the academic community. The 

images were captured under varying lighting 

conditions, predominantly using natural ambient 

light as the primary light source. This approach 

introduced some noise and blurriness into some of 

the images, imitating the real-world environment. 

 

 
Figure 2. Camera setup 

 

The model train, as seen from above, has a variety 

of different seats in a specific order. Figure 3 

shows examples of the photos that are included in 

the dataset. The seats were rearranged to simulate 

defects on the model trains in three different 

classes: missing seats, rotated seats (rotated 90° 

and 180°), and swapped seats. Originally, we 

captured a dataset containing 454 images with the 

following amounts in each class: 40 photos of 

"Correct", 210 photos of "Missing", 44 photos of 

"Rotation", and 160 photos of "Swap". Given the 

imbalance in the dataset where the "Correct" and 

"Rotation" classes had fewer instances compared 

to the other classes, a Python script was used to 

address this by augmenting these classes. The 

script generated additional variations of each 

photo within these classes, incorporating changes 

in blurriness, sharpness, contrast, and brightness. 

 

While it is understood that defects are naturally 

anomalous and typically represent a smaller 

fraction of real-world data, this intentional 

imbalance was necessary for the training phase. 

By exposing the model to a larger number of 

defective instances, we aimed to enhance its 

ability to detect and learn from various defect 

scenarios, thereby improving its overall 

performance and robustness in identifying 

defects. Following this augmentation process, the 

dataset was expanded to include 240 "Correct" 

images and 264 "Rotation" images, mitigating the 

initial imbalance and ensuring that all classes 

contain a relatively equal number of photos. The 

subsequent dataset contained 866 photos. 

 

Correct layout Missing seats 

 
Rotated seats Swapped seats 

 
Figure 3. Example of images from the dataset 

(bounding boxes added afterwards for visual 

reference) 

 

The dataset was divided into subsets according to 

the following percentages: 

 

Training : Validation : Testing 

70% : 15% : 15% 

 

Custom CNN 

The model architecture of the custom CNN is 

shown in Figure 4. The network was defined and 

subsequently called in a feedforward pass. 
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Figure 4. CNN model architecture 

 

The model has 800492 parameters, and the 

maximum number of epochs was 100. The 

training dataset was then loaded into the model 

and the accuracy of the model was evaluated 

resulting in 100% accuracy on the training dataset, 

100% on the validation dataset, and 100% on the 

testing dataset. This indicated that the model has 

correctly classified all instances in each of these 

datasets. While this might initially seem ideal, it 

raised concern due to its following potential 

implications: 

o Overfitting: There is a high chance that the 

model has memorized the training data rather 

than generalizing from it, especially if the 

training dataset is not very large or complex. 

o Data leakage: There might be an overlap 

between the training, validation, and testing 

data, or the validation and testing data might 

not be truly representative of new, unseen 

data. 

o Overly simple dataset: The validation and 

testing datasets might be too simple or 

similar to the training data. 

 

Additional investigation was required to confirm 

whether the model accurately identified image 

features for predictions, as elaborated upon in 

Section 4. The original dataset was correctly split 

into subsets, eliminating data leakage as a 

potential issue. The Grad-CAM package from 

(Gildenblat & Contributors, 2021) was employed 

on the testing dataset’s results to generate a heat 

map highlighting significant regions in input 

images influencing the network's decisions. 

Figure 5 illustrates that the model predominantly 

classified images based on their borders, which 

should not be a relevant feature in the model’s 

decision making. This rules out the concerns, 

indicating that the model does not overfit, nor was 

the dataset too simple. Instead, it suggests that the 

CNN learned false signals, resulting in the task 

being trivially solved. 

 

 
Figure 5. Grad-CAM image showing what the 

model focuses on 

 

Pre-Trained CNNs 

To test whether the incorrect focus of the model 

on irrelevant features was due to the architecture 

of the custom CNN, available pre-trained CNNs 

were also tested. 

 

Table 1 shows the models that were used with the 

number of parameters. These models were chosen 

as they had relatively small numbers of 

parameters and are thus considered as suitable for 

implementation on a small-scale device with less 

computational power. 

 

Table 1. Comparison of pre-trained models 

Model Parameters 

Custom CNN 800 492 

ResNet-50 (Koonce, 2021) 23516228 

EfficientNetV2_Small_Weights 

(Tan & Le, 2021) 

20182612 

DenseNet-161 (Dhillon & 

Verma, 2022) 

26480836 

 

These models delivered the same results as the 

custom CNN with accuracies of 100%. Grad-

CAM revealed that these models predominantly 

focused on the image background rather than the 

relevant seats, despite being trained with optimal 
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parameters validated for performance. This 

proved that they were not able to better distinguish 

between false signals and true defects. Therefore, 

using pre-trained models does not solve the 

problem, and the custom CNN was further iterated 

over to determine whether image processing 

techniques, like cropping, normalisation, and 

transforms will help to eliminate the bias that is 

formed due to irrelevant features. This is 

discussed in further detail in Section 4. 

 

Grad-CAM 
Various Grad-CAM methods (Gildenblat & 

Contributors, 2021) were used to analyse the 

attention patterns of the CNNs and to see if any of 

these techniques reveal information that might 

lead to a different conclusion. These methods 

include: 

o Standard Grad-CAM: Uses gradients to 

generate visual explanations for model 

predictions. 

o Grad-CAM++: An improved version of 

Grad-CAM with better localization. 

o XGrad-CAM: Scales the gradients by the 

normalized activations. 

o AblationCAM: Zeroes out activations and 

measures how the output changes. It helps 

identify crucial areas by removing parts of 

the image. 

o ScoreCAM: Instead of relying on gradients, 

it alters the input image by scaling the 

activations of certain neurons and measures 

how the output drops. 

o EigenCAM: Utilizes principal components 

for class activation maps. 

o LayerCAM: Explores hierarchical class 

activation maps for better localization. 

 

Surprisingly, all these techniques consistently 

revealed that the model focused on irrelevant 

areas rather than the expected features. Given this 

consistent outcome, the decision was made to 

streamline the approach and rely solely on 

standard Grad-CAM for future investigations. By 

doing so, simplicity is maintained without 

sacrificing accuracy, as all the methods yielded 

similar results. 

 

Figure 6 shows an example of the Grad-CAM 

outputs compared to the original photos. 

 

 
Figure 6. Example of Grad-CAM images 

 

4. Results and Discussion 

CNN Model Adjustments 

Each training run of the CNN model highlighted 

an area of potential improvement. Initially, the 

models’ performance was evaluated by their 

effectiveness in correctly classifying the images to 

their corresponding classes. The model’s accuracy 

on the training, validation, and test datasets were 

calculated with each run and the ablations were set 

up to understand the contribution that each 

specific component and feature had to the model's 

performance, which is shown in Table 2. 
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Table 2. Ablations of CNN model adjustments 
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1 454 1e-3  20 82% 82% 82% 

2 866 1e-3  40 100% 100% 100% 

3 866 2e-3  24 100% 100% 100% 

4 866 2e-3 √ 39 99% 98% 99% 

 

In the first training run, the original dataset of 454 

photos was used and the model struggle to 

correctly predict the classes. In the second run, the 

expanded dataset of 866 photos was utilised to 

address the imbalance discussed in section 3. The 

duration of the training run increased considerably 

and consequently, the learning rate was increased 

to 2e-3 in the next run to accelerate training and 

avoid the model becoming trapped in local 

minima without converging to an optimal 

solution. The training and validation losses did not 

decrease significantly after around 20 epochs, as 

shown in Figure 7. 

 

 
Figure 7. Training and validation loss of run 2 

 

The flattening of the loss curves after 

approximately 20 epochs indicated that the model 

had effectively learned the patterns present in the 

training data. Therefore, early stopping was 

introduced to terminate training if either the 

training or the validation loss increased or if they 

fail to decrease by more than 0.005 across more 

than five consecutive epochs. Implementing a 

patience value of 5 epochs provided the model 

with sufficient leeway to move past local minima 

during training. After these adjustments were 

applied, Grad-CAM indicated that the model's 

decision-making was still largely influenced by 

the background of the images. Therefore, image 

processing techniques were applied. 

 

Image Processing 

A range of image processing techniques were 

applied to enhance the model's robustness against 

unwanted features. These techniques include 

cropping, normalisation, and some of 

TorchVision's transforms (TorchVision 

Maintainers & Contributors, 2016), which are 

shown in Table 3. 

 

Table 3. Ablations of image processing 

techniques 
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 d
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4 Previous run 39 99 98 99 

5 + Cropping 39 97 96 95 

6 + Normalisation 33 97 96 95 

7 + Random Horizontal 

Flip Transform 

45 95 96 93 

8 + Random Vertical Flip 

Transform 

39 90 94 89 

9 + Random Rotation 

Transform 

66 90 93 90 

10 + Random Perspective 

Transform 

58 87 91 86 

 

This performance metric evaluates how well the 

model's predictions align with the actual image 

labels. After investigating the Grad-CAM outputs, 

it became clear that these accuracies presented in 

Table 2 and Table 3 do not fully capture the 

essence of the model's performance as there is 

more complexity behind the scenes concerning 

what aspects of the images the model is focusing 

on for making these predictions. 

 

Subsequently, the Grad-CAM outputs where 

further used to investigate whether the model 

focused on the regions in the images where the 

defects occurred. It became apparent that the 

model focused more on features external to the 

train, struggling to even simply focus on the train 

itself. Thus, before moving on to verifying 

whether the model could point out the correct seat 
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where the defect occurred, a more conservative 

accuracy measure was used that involves counting 

how often the Grad-CAM outputs show the model 

focusing on the train itself and not on the 

background. This focus accuracy metric is 

presented in Table 4 and visualised in Figure 8, 

and it will be used for further analysis throughout 

the study. 

 

Table 4. Percentage of images correctly focused 

on in each class 

Custom CNN’s Focus Accuracy (%) 
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1 Original dataset 0 0 0 0 0 

2 + Bigger dataset 1 7 25 52 19 

3 + New learning rate 19 0 36 17 19 

4 + Early stopping 22 0 29 31 21 

5 + Cropping 57 22 29 25 34 

6 + Normalisation 36 57 20 29 35 

7 + Random 

Horizontal Flip 

Transform 

72 62 57 73 65 

8 + Random Vertical 

Flip Transform 

7 50 38 31 31 

9 + Random 

Rotation 

Transform 

74 43 49 40 53 

10 + Random 

Perspective 

Transform 

25 25 30 19 25 

 

 
Figure 8. Visualisation of model's focus accuracy 

 

Over the first four training runs, the focus 

accuracy hovers around 20%, indicating that 

although the model achieved nearly perfect 

accuracy in predicting the image classes (as 

shown in Table 2), it based these predictions on 

incorrectly learned features. In subsequent runs, 

image processing techniques were applied in 

attempt to aid the model in training on the correct 

features. 

 

Cropping: The Grad-CAM images (as shown in 

Figure 6) revealed that the model primarily 

focused on the image background to make 

predictions. To mitigate this problem, a cropping 

transform was applied to the images, reducing the 

1920 x 1080 resolution to 1600 x 780 by removing 

the border areas where the model tended to focus. 

This increased the CNN’s focus accuracy 

significantly and tended to put more focus on the 

train itself (as shown in Figure 9). Despite this 

improvement, the background was still the focus 

in some cases. 

 

 
Figure 9. Grad-CAM output after cropping 

 

The false signals learned upon may have been 

caused by the following factors that might have 

varied slightly between each class of photos: 
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o Lighting Changes: Differences in ambient 

light temperature, shadows, or bright spots 

due to photos being captured during a 

different time of day or due to passing clouds. 

o Positioning Shifts: Minor adjustments in how 

the train was positioned under the camera due 

to rearranging the seats between shots. 

o Photo Blur: Blurring in the photos caused by 

the webcam's auto focus settings. 

 

Normalisation: With the added challenges posed 

by environmental conditions and camera settings 

in computer vision tasks, a Normalisation 

transform was applied to the images in attempt to 

address these issues. However, this did not 

improve the overall focus accuracy of the CNN. 

 

Transforms: TorchVision's transforms 

(TorchVision Maintainers & Contributors, 2016) 

were applied cumulatively in attempt to mitigate 

the false signals that could have formed due to the 

train’s position and/or varying brightness levels. 

o Random Horizontal Flip: applied with a 

probability of 0.5 (approximately half of the 

images would be horizontally flipped). It 

aims to reduce the CCN’s tendency to focus 

on variations in the background surrounding 

the train, which may differ to the right and 

the left. 

o Random Vertical Flip: Similarly, this 

transformation aims to diminish the CNN’s 

focus on the varying spaces at the top and the 

bottom of the train. 

o Random Rotation: randomly rotates the 

image by up to 5°, aiming to further reduce 

the tendency to focus on the image border. 

o Random Perspective: distorts the perspective 

of the images with the same aim. A distortion 

scale of 0.2 and a probability of 0.5 was used. 

 

Despite applying various image processing 

techniques, the model still did not consistently 

focus on the train and was influenced by the 

background in its predictions. To address this, the 

train's outside borders were identified using a 

Jupyter Notebook developed by Roboflow & 

James (2023). This script processes the original 

images to locate the coordinates of the train's 

borders. These images with the located 

coordinates of the trains’ borders were then put 

through another Python script that crops the 

images to the minimum and maximum height and 

width values. These final cropped images are then 

put through the same iterations of training runs, 

with consistent image processing techniques. This 

entire process is shown in Figure 10. However, 

even with these adjustments, the CNN 

occasionally still focused on the background of 

the image. 

 

 
Figure 10. Outputs of cropping process 

 

Rotated Cropping 

Consequently, the goal shifted to eliminating the 

background entirely and rotating the trains to be 

horizontally aligned. This was achieved by 

sending the coordinates of the model train's border 

on each image through a Python script that aimed 

at optimizing the orientation of the train images 

based on the provided coordinates. It reads the 

coordinates and determines an optimal rotation 

angle to align the trains horizontally by using a 

loss function to minimize the average height of the 

coordinates, as the train would be perfectly 

horizontal at the smallest height. The images are 

rotated and once again cropped to the minimum 

and maximum height and width values. An 

example of a final rotated and cropped image is 

shown in Figure 11. 

 

 
Figure 11. Example of final rotated crop image 

 

These images were subsequently put through the 

same iterations of training runs. With the 

backgrounds completely removed or cropped out, 

the performance metric was adjusted to evaluate 

the CNN's ability to concentrate on the relevant 

defect. The model's accuracy is determined not 

only by its ability to predict the correct class but 

also by providing the correct rationale for that 
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prediction. This ensures that the model is both 

accurate in its classifications and in its 

identification of the key features leading to those 

classifications. 

 

Given that correctly identifying the relevant 

defect is now the primary focus, the CNN's ability 

to classify the 'Correct' class is no longer 

evaluated. Instead, only the defect classes are 

considered, as they demonstrate whether the 

model can accurately classify the specific defects. 

This shift ensures that the model's performance is 

assessed based on its ability to identify and focus 

on the relevant defects. 

 

When identifying missing seats, the CNN based 

its predictions on the presence of other seats rather 

than pinpointing the missing seat's location, as 

shown in Figure 12. If the measure had accounted 

for the total number of seats, Grad-CAM images 

might have shown the CNN's ability to detect a 

missing seat. However, since this measure was not 

used, the model's focus accuracy for 'Missing' 

defects is 0%. 

 

 
Figure 12. Grad-CAM example on 'Missing' class 

 

For the 'Rotation' class, the CNN did not indicate 

the location of rotated seats (shown in Figure 13), 

giving a 'Rotation' class focus accuracy of 0%. 

 

 
Figure 13. Grad-CAM example on 'Rotation' class 

 

Interestingly, in predictions of the 'Swap' class, 

the CNN successfully identified swapped blue 

seats alongside others (as depicted in Figure 14) 

but did not do the same for swapped brown seats. 

This trend is evident across nearly all Grad-CAM 

outputs from the training runs on this dataset. The 

CNN's focus on blue seats may stem from 

challenges in distinguishing between the grey 

train base and brown seats, leading to a preference 

for more distinct colours. Despite this, the 'Swap' 

class also exhibited a focus accuracy of 0%. 

 

 
Figure 14. Grad-CAM example on 'Swap' class 

 

Using this performance metric of looking at the 

specific seats, the CNN failed to provide the 

correct rationale for any of its predictions. This 

establishes the need for further research on the use 

of CNNs for image classification in assembly 

defect detection. 

 

Assumptions and Limitations 
In real-world scenarios, defects are rare and 

difficult to collect, unlike our dataset where 

defects are abundant to enhance the CNN's 

learning. This intentional imbalance helps 

detection but limits real-world transferability, as 

actual production environments have fewer 

defects, affecting model performance and 

generalization. We leverage this limitation to 

enhance our model’s robustness. 

 

Another limitation is the use of smaller CNNs, 

chosen to develop a lightweight, stand-alone 

solution for IoT devices that minimally disrupts 

production. While this approach supports our 

goal, it may have limited the model's accuracy and 

robustness compared to larger networks. 

 

Not all types of assembly defects were tested due 

to their wide variety. The dataset focused on 

common defects, such as missing parts, 

incorrectly oriented parts (rotated 90° and 180°), 

and swapped parts. Defects like gaps, lateral 

misalignment, and hanging offsets were not 

considered. Thus, while the findings may not 

cover all assembly defects encountered in real-

world scenarios, they provide a reasonable 

representation of what can be expected. 

 

Future research should improve model robustness 

and generalization using advanced data 

augmentation, semi-supervised learning, and 

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 136 of 270



synthetic datasets. Balancing datasets to reflect 

defect rarity and evaluating trade-offs between 

model complexity and IoT deployment 

constraints are also crucial for practical 

applications. 

 

5. Conclusions 
This study aimed to determine whether CNNs 

used for automated visual defect detection in parts 

or simple tasks could be effectively applied to 

assembly defect detection based on image 

classification. To achieve this, a dataset of top-

down images of model trains was collected, 

featuring three common types of assembly 

defects: missing parts, wrongly oriented parts, and 

swapped parts. The image backgrounds 

introduced significant noise, leading to false 

signals being learned by the model due to shortcut 

learning. Despite extensive experimentation with 

various CNNs and applying mitigation strategies, 

including data augmentation and image 

processing techniques, none of the models could 

entirely differentiate between defect and non-

defect trains based solely on the defects. Grad-

CAM analysis revealed that the models often 

focused on irrelevant features, such as image 

borders, rather than the actual defects. These 

findings highlight the need for improved 

algorithms that can accurately identify assembly 

defects without being misled by irrelevant 

patterns resulting from shortcut learning. 

 

While a perfectly controlled production 

environment with minimal external influences is 

preferred, it may not be achievable or practical 

due to associated costs and the need for 

perfectionism. Therefore, the goal of future 

research should be to develop a CNN that is 

resilient against external factors and capable of 

mitigating unwanted influences. This approach 

would make the model suitable for various 

industrial applications without requiring extensive 

refinement of the production environment itself. 
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