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Abstract 

Ocular disease diagnosis using fundus images is 

one of the most challenging tasks in the medical 

field but is necessary for early screening and 

treatment. This manual process is extremely time 

consuming, complex and error prone. Currently 

there is an increased demand for the utilization of 

deep learning techniques for the automated 

detection of ocular diseases, especially for use on 

biomedical images. However, these conventional 

techniques such as Deep Neural Networks and 

Convolutional Neural Networks (CNNs) present 

some challenges, such as its tendency to overfit on 

smaller datasets and its inability to measure the 

uncertainty of its predictions. This is crucial in the 

medical field to determine the reliability of the 

predictions made by the automated systems. Thus, 

in this paper a Bayesian Convolutional Neural 

Network (BCNN) is implemented for Cataract 

disease detection to provide the reliability 

(uncertainty) estimates sought after in the medical 

field. The BCNN is benchmarked against the 

implementation of a standard Convolutional 

Neural Network. The BCNN model was compiled 

using the negative log-likelihood loss function 

and an Adam optimizer with a learning rate of 

0.001 trained over 100 epochs. The CNN was 

compiled similarly except for the loss function 

which was the categorical cross entropy loss. The 

test results indicate that the BCNN model 

achieved 93.16% accuracy, while the standard 

CNN achieved an accuracy of 95%. Both models 

achieved comparable accuracy results to existing 

studies that utilized CNN architectures to predict 

ocular diseases. Although the CNN gave a slightly 

better accuracy, it cannot account for the 

uncertainty measurements of its predictions, 

which the BCNN is able to do. Thus, the BCNN 

would be more useful for ophthalmologists.  

 

Keywords: Ocular Disease detection, Cataract, 

Computer Vision, Bayesian Convolutional Neural 

Networks.  

 

1. Introduction 

Ocular diseases refer to any type of disease or 

infection which negatively impacts the health and 

vision of a patient’s eyes (Arslan & Edras, 2023). 

The main ocular diseases responsible for vision 

impairment include cataract, glaucoma, and 

retinal disease (Ramanathan et al., 2021). Early 

detection of these diseases is crucial as early 

treatment can prevent it from leading to complete 

loss of vision or extreme damage to the eye 

(Leibig, et al., 2017; Arslan & Erdas, 2023). 

According to the World Health Organization, out 

of the 2.2 billion people suffering from vision 

impairment, at least 1 billion of them could have 

received early treatment to prevent it through 

early detection (Arslan & Erdas, 2023). The 

existing procedure of manual ocular disease 

detection is time-consuming, error-prone and 

complex. Thus, there is a need for an automated 

detection system for ocular diseases to aid in the 

screening process (Leibig, et al., 2017).   

 

Currently, there is an increasing demand in the 

medical field to utilize deep learning and machine 

learning techniques for detection of diseases, 

including ocular diseases (Patankar, 2021; 

Mohammed & Farrukh, 2022; Arslan & Erdas, 

2023). In particular, the use of deep learning 
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techniques for biomedical images has been 

demonstrated to be a very active research area (J 

Goecks, et al., 2020).  One of the most popular 

deep learning techniques for medical imaging 

applications, such as image segmentation, are 

Convolutional Neural Networks (CNNs). 

 

CNNs removes the need for manual feature 

extraction and learns features directly from 

images (B Mohammed & J Farrukh, 2022). CNNs 

have already advanced to the point of surpassing 

human accuracy in image classification problems, 

thanks to its ability to fit to a wide variety of non-

linear data points (Arslan & Erdas, 2023; Shridhar 

et al., 2019). However, CNNs require a large 

amount of data to train on. This thus means that 

standard CNNs, or any deep neural network, are 

highly likely to overfit on smaller datasets (E 

Mohammed, 2022; Shridar et al., 2019). This 

leads to the model fitting extremely well to the 

training dataset, but not performing very well on 

any new or test data which makes it incapable of 

determining any uncertainty which may be 

present in the training data. This causes the model 

to make overly confident decisions about what the 

correct classification or prediction may be when 

given new data (Shridhar et al., 2019). To reduce 

the model’s susceptibility to overfitting, various 

regularization techniques are commonly 

employed such as L1 and L2 regularization, early 

stopping, and weight decay (Shridhar et al., 

2019).  Bayesian Convolutional Neural Networks 

(BCNNs), which we implement in this paper 

improve upon these problems and are thus a better 

alternative solution, especially when working 

with smaller datasets and in cases where 

uncertainty estimates are necessary.  

 

In the medical field, it is an absolute necessity to 

be able to evaluate and determine the reliability of 

the predictions and classifications made by 

automated systems. Therefore, it would be 

beneficial for the models to be able to provide an 

estimate of the uncertainty of the prediction or 

classification made, especially since there will be 

some images which may be more difficult to 

classify due to image quality or the equipment 

utilized. This could enable the model to flag the 

images that are more difficult to classify for the 

medical experts to place close attention to and 

consult on to determine which diagnosis would be 

the most accurate. It would thus be unjustifiable 

to utilize single-point estimates for the CNN filter 

weights to base the classifications on (Shridhar et 

al., 2019).   

BCNNs implement a Bayesian posterior inference 

over the parameters of the neural network. This 

essentially means that, instead of having point 

estimates for the filter weights or kernels, it places 

a probability distribution over these kernels, 

which enables it to be robust to overfitting. This is 

demonstrated in Figure 1. Through this technique, 

it also offers uncertainty estimates through its 

parameters.   

 
Figure 1: An example of CNN vs BCNN. The top 

is a standard CNN with single point-estimates as 

weights, and the bottom a BCNN with probability 

distributions over weights  

 

In Bayesian modelling, two main types of 

uncertainty exist, namely Aleatoric and 

Epistemic. Aleatoric uncertainty is utilized to 

measure the uncertainty, noise, or variability 

present in the data collection method, for 

example, sensor noise. This type of uncertainty 

can thus not be reduced by collecting more data as 

it derives from the data collection method 

(Shridhar et al., 2019). In our case, the noise in the 

data could be from a dusty camera lens, or low-

resolution imaging devices, and the variability 

could be the number of patients captured with 

cataracts vs no cataracts. In contrast, Epistemic 

uncertainty is used to measure the uncertainty of 

the model and can be reduced by increasing the 

size of the training data (Shridhar et al., 2019; 

Hüllermeier et al., 2021). In current literature, 
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such as (C Leibig, et al., 2017; B Mohammed & J 

Farrukh, 2022), these uncertainties can be 

measured by placing probability distributions 

over the model parameters or outputs. Typically, 

the Epistemic uncertainty is determined through 

the placement of a prior distribution over the 

model parameters to determine to which degree 

these parameters or weights vary given some data. 

Alternatively, the Aleatoric uncertainty is 

determined by placing a probability distribution 

over the model’s output (Shridhar et al., 2019). 

 

The advantages of BCNNs and the motivation for 

utilizing it for this paper can be summarized as 

follows:  

• BCNNs offer a measure of uncertainty for 

model predictions, which is essential in the 

medical field, where an incorrect diagnosis 

could prove fatal (C Leibig, et al., 2017).  

• BCNNs tend to work well on small datasets 

such as the one utilized for this paper 

(Shridhar et al., 2019).  

 

Thus, the development of a model which may 

effectively classify fundus images as having a 

cataract or not with a measurement of uncertainty 

would greatly assist in an improved cataract 

disease diagnosis.   

 

The rest of the article is organized as follows: 

Related Works, which describes the BCNN 

algorithm and how existing literature is utilizing it 

and other computer vision methods for automated 

detection of ocular diseases. The methodology 

section provides an overview of the data and the 

steps followed to implement and test the BCNN. 

Important findings are discussed in the 

experiments and results section. Finally, the study 

draws on conclusion in section 5.   

 

2. Related Works 

A cataract is an obscuring or dulling of the lens 

within the eye. This is one of the most prevalent 

ailments that can lead to blindness. Machine 

Learning and Deep learning-based methods have 

been used to assist in mitigating severe 

occurrences of cataracts due to the damaging 

impact of cataracts. However, conventional deep 

learning-based methods lack the ability to provide 

reliable measurements of the certainties of its 

predictions, which is highly sought after in the 

medical field. Thus, BCNN was introduced. It can 

gain knowledge on the key features of datasets, 

even on smaller datasets that conventional 

techniques have difficulty fitting to. It can 

incorporate feature learning actions into the model 

development, reducing the incompleteness of 

manual structure features. It also provides 

uncertainty estimates, allowing one to assess the 

reliability of its predictions, enabling them to be 

used in various medical imaging paradigms 

(Dong, Zhang, Qiao, & Yang, 2017).   

 

The introduction of the concept of BCNN has 

sparked a lot of research, particularly in the 

medical field, due to its added benefit of providing 

valuable details about uncertainty in predictions. 

Due to their potential to gain knowledge on 

meaningful attributes from data, CNNs have been 

demonstrated to perform better than previous 

state-of-the-art methods in computer vision 

applications (BN & Babu, 2024). However, 

CNNs, and neural networks in broad terms, lack 

uncertainty quantification and thus are easily 

duped by attacks. Dera et al. (2020) proposed a 

Bayes- Synthetic aperture radar (SAR) Net, a 

BCNN that can classify SAR images while 

considering the network's confidence in its 

prediction. The Bayes-SAR Net propagates the 

mean and covariance of the estimated likelihood 

function of the network parameter values given 

the relevant information, yielding a forecasting 

mean and covariance of the classifying outcome. 

In the presence of opposing disturbance, Bayes-

SAR model achieved an accuracy that is 

approximately 10% higher than a normal SAR 

model. Chai, Bian, Liu, Li, and Xu 

(2021) proposed a glaucoma detection method 

based on Bayesian Deep Multisource Learning 

(BDMSL). The study aimed to improve the 

effectiveness of automatic diagnosis by taking 

uncertainty into consideration and obtaining 

critical details from multimodal sources of data 

such as medical factors, images, and texts. 

Multisource learning is used specifically to 

incorporate data from numerous sources, while 

Bayesian deep learning is used to acquire model 

uncertainty details. Based on legitimate health 

care data captured from one of China's best eye 

hospitals, the findings show that the BDMSL 

model outperforms other methodologies in 

aspects of glaucoma detection. In addition, the 

user study demonstrates that the BDMSL model is 

preferred by users (i.e., ophthalmologists).  

 

Many researchers have been interested in the 

analysis of fundus images for cataract detection 

over the last few years (Pratap & Kokil, 2019; 

Qiao, Zhang, Dong, & Yang, 2017). Cataracts are 

one of the most common causes of blindness, 
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accounting for more than half of all blindness. 

Zhang et al. (2017) used Deep Convolutional 

Neural Network (DCNN) to detect and rank 

cataract automatically. It was also used to 

illustrate attribute maps at the pool5 layer, 

highlighting their elevated empirical semantic 

significance and explaining the rationale behind 

the attribute illustration extracted by the DCNN. 

The proposed DCNN classification system was 

cross validated on up to 5620 images of 

population-based medical retinal fundus images 

gathered from hospitals.  From this paper it was 

concluded that as the number of available samples 

increased, so did the DCNN classification 

accuracies, and the non - constant variety of levels 

of accuracy. This reiterates the fact that 

conventional deep learning techniques perform 

best on larger datasets. The method achieved the 

highest accuracy of 93.52 % in cataract detection 

and 86.69 % in ranking cataract respectively. In 

another study, instead of using images to detect 

cataract, Yu et al. (2019) evaluated machine 

learning and deep learning algorithms for 

automated phase classification by a manual 

process of segmented phases in videos of cataract 

surgical procedure. Four techniques were used, 

each with a distinct set of input data: Support 

Vector Machine (SVM), Recurrent Neural 

Network (RNN), Convolutional Neural Network 

(CNN), and CNN-RNN. Each technique was 

tested using a 5-fold cross-validation procedure. 

The overall average accuracy of the four 

algorithms varied from 0.915 to 0.959. While 

specificity was generally greater across all phases 

and all four algorithms ranged from 0.877 to 

0.999, and precision, 0.283 to 0.963.  

 

Yusuf, Theophilous, Adejoke, and Hassan 

(2019) introduced a web-based Computer Aided 

Diagnostic for cataract prediction system that 

focused on CNN that can be used by anyone 

outside of a hospital setting. The system design 

was trained on a set of data of 100 eye images 

obtained from Google image search findings for 

"regular human eyes" and "cataract in human 

eye". It trained a different model using the 

ImageNet model established in Large Scale 

Visual Recognition Challenge 2012 

(ILSVRC2012) using the CNN classification 

model. The model can now categorize eye images 

as "Normal" or "Cataractous". The system was 

intended to take images as input data and attained 

a Sensitivity of 69%, Specificity of 86%, 

Precision of 86%, F-Score of 56%, and AUC of 

84.56%. The accuracy was 78%, affected by the 

trained model during ImageNet image 

classification using a deep CNN. As with (Kaur, 

Chetty, & Singh, 2020; Kapoor & Arora, 2022). 

Dense-Net and U-Net were used to detect and 

classify eye cataract by analyzing 200 

observations of image data. The experimental 

feature extraction analysis outperformed single 

layer feature extraction and overfitting that was 

prevented by the propagation techniques. The 

proposed method achieved 89.5% and 93.3% 

accuracy rates, 75% and 80% sensitivity, 82% and 

86% specificity for Dense-Net and U-Net, 

respectively.  

 

Deep Learning has provided significant insights 

and advancements in cataract detection, and it 

continues to do so due to its high accuracy rates. 

It has brought benefits such as detecting cataracts 

before it progresses to severe stages, which can 

aid in early treatment and its high cataract 

classification rates. However, there is still a great 

need to investigate more effective algorithms for 

cataract classification. This study is significant 

because it experimented with a BCNN for cataract 

classification which has been reported to be 

preferred in fields such as medical due to its 

reliability and uncertainty measurements and 

offers potentially improved performance against 

conventional methods.  

 

2.1 Research Gap 

This research addresses uncertainty estimation for 

the detection of cataract ocular disease using 

BCNN. Conventional manual diagnostic 

procedures are not just time consuming but also 

prone to errors, which can result in inefficiencies 

in care. By incorporating uncertainty 

quantification our research aims to improve the 

reliability of predictions ensuring that medical 

resources are appropriately allocated to patients 

diagnosed with cataract. Additionally, this 

method strives to enhance the detection of cataract 

leading to patient outcomes and more effective 

utilization of healthcare resources. Despite the 

advancements in deep learning the absence of 

uncertainty estimation remains a major obstacle 

and our study endeavours to address this shortfall 

and contribute further insights, to the existing 

knowledge base. 

 

3. Methodology 

The method used in the study for classifying 

cataract and normal images of ocular disease 

patients consists of the following steps: 1) Data 

collection and understanding, 2) Data Pre-
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processing and Transformation, 3) Modelling and 

4) evaluation. The study’s experiment setup is 

also discussed.  

a) Data Collection and Understanding 

The proposed CNN and BCNN models were built 

using a publicly available Ocular Disease 

Intelligent Recognition (ODIR) dataset on Kaggle 

(larxel, 2020). The Dataset can be found at the 

following link:  

https://www.kaggle.com/datasets/andrewmvd/oc

ular-disease-recognition-odir5k.  

The ODIR represents a structured ophthalmic 

database that contains diagnostic keywords from 

doctors, left and right eye colour fundus 

photographs of 5 000 patients with their 

respective ages.  This dataset is a representation of 

real-world patient information obtained by 

numerous medical and hospital centers in China 

by the Shanggong Medical Technology Co., Ltd. 

The Fundus images present in the dataset were 

captured by several market cameras such as 

Kowa, Canon, and Zeiss, resulting in differing 

image resolutions. Furthermore, 8 patient 

classification categories are represented in the 

dataset, including the normal control group (N) 

and 7 ocular disease classes (Cataract (C), 

Glaucoma (G), Diabetes (D), Age-related 

Macular Degeneration (A), Pathological Myopia 

(M), and other abnormalities or diseases (O)). The 

CNN and BCNN models were built to classify the 

cataract class due to its high prevalence in ocular 

disease. The distribution of patients among the 8 

categories of ocular disease is show in Figure 2.  

 

Figure 2: Patient Distribution over the 8 

classification categories 

b) Data Pre-processing and Transformation 

Data pre-processing and transformation is an 

essential preliminary step taken in machine 

learning to convert raw input data into suitable 

input data for modelling (Garcia et al., 2016). The 

first step taken towards pre-processing was 

filtering out images from the classification 

categories of interest in the ODIR dataset, namely, 

the Normal and Cataract images. Since the 

Normal category had the most patient images, a 

random sample of normal images were obtained 

in accordance with the number of images present 

in the Cataract class. In total, 782 images were 

acquired, in which 301 images belonged to the 

Cataract category and 481 belonging to the 

Normal category. The images were randomly split 

into train and validation image folders in the ratio 

of 90:10. Out of the 782 images, 702 images were 

used for training and 80 images as validation data. 

The images were shuffled to reduce bias and 

variance, ensuring the BCNN models remain 

general and are less likely to overfit. Data loading 

was performed in batch sizes of 44 and 4 for 

training and validation, respectively.  

Pre-processing and transformation steps: 

1. Read Cataract and Normal image files 

from Train and test directory  

2. Resize each image to 75 × 75 pixels for 

consistency and computational efficiency 

3. Rescale each image by 
1

255
  to ensure all 

the pixel values are within a similar range 

of [0-1] for model stability and 

performance 

 

c) Modelling 

Two types of CNN-based models were built, a 

standard CNN and a Bayesian CNN (BCNN). The 

standard CNN model was built to benchmark the 

results of the BCNN. A standard CNN was chosen 

as a benchmark model due its demonstration of 

outstanding accurate results and performance in 

image classification and computer vision 

problems in comparison to other deep neural 

networks (Khan et al., 2022). The BCNN and 

CNN models were built using the same neural 

network architecture for consistency and 

comparable results. The structure of the model 

architecture used is shown in Figure 3, 

indistinguishable to the one proposed by 

(Winastwan, 2020). 

 

 

Figure 3: Standard CNN and Bayesian CNN 

Overall Model Architecture. 
 

Network Architecture 
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The proposed standard CNN and Bayesian CNN 

network architecture consists of four CNN layers, 

one Flatten layer, a Dense and Dropout layer after 

flattening, followed by a Dense layer at the end. 

The underlining difference between the proposed 

Standard CNN and BCNN architecture is the first 

convolutional layer and last dense layer as shown 

in Figure 4.  

 

 

Figure 4: Standard CNN (left) and Bayesian CNN 

(Right) Architectures 
 

Standard CNN 

The standard CNN model was built with 4 CNN 

layers: 1 input CNN layer with 3 input channels 

and 3 hidden CNN layers. A rectifier linear unit 

activation function was applied to all the CNN 

layers. Each CNN layer output was fed to a filter 

size of 2 × 2 max pool layer. A kernel size of 

3 × 3 dimension was used in each CNN layer 

with default padding and strides. The resulting 

output of the 2D CNN was flattened and fed to a 

dense layer of 512 units and a dropout layer with 

a rate value of 20% to avoid overfitting. Finally, a 

SoftMax function was used for computing the 

probability of each category.  

ReLU Activation Function:  

𝑓(𝑥) = ma x(0, 𝑥) 

The ReLU function is represented by the above 

equation, where x is an input to a neural network 

neuron. ReLU is used due to its common adoption 

in neural networks and its ability to overcome the 

gradient vanishing problem which allows models 

to perform better and learn faster (He et al., 2021) 

SoftMax Function:  

The proposed CNN model used a SoftMax 

Function due to the outputs being mutually 

exclusive. The SoftMax function was used to 

obtain the probability of an image belonging to a 

category. The SoftMax function is defined 

as:𝑓 (𝑥𝑖) =  
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝐾

𝑗=1

 

Where 𝑥𝑖 is the input, 𝐾 is the number of 

categories, 𝑒𝑥𝑖  is the standard exponential 

function for the input, and 𝑒𝑥𝑗 is the standard 

exponential of the output (Sharma et al., 2017). 

Bayesian CNN 

The Bayesian CNN model was built following a 

similar architecture as the standard CNN model 

with the only difference being the first 

convolutional layer and the last dense layer, as 

shown in Figure 4. A 

Convolutional2DReparameterization layer was 

used in the first layer instead of a Conv2D layer. 

This was to enable the BCNN model to take 

aleatoric uncertainty into account. This in return 

allows the BCNN model to create outputs drawn 

from a distribution in comparison to a standard 

CNN that creates deterministic value outputs 

(Winatwan, 2020). Since Bayesian models are 

built properly by combining probability 

distributions, the following was defined in the first 

convolutional layer (Martin, 2016): a) Prior 

distribution for the Kernel and bias parameters, b) 

Posterior distribution for kernel and bias 

parameters, and c) Kullback-Leibler divergence.  

Prior for Kernel and bias parameters – This 

represents our prior belief about the kernel and 

bias parameters of the model before observing any 

data. (Martin, 2016). The prior was defined by a 

multivariate normal distribution that contains 

non-trainable parameters. The multivariate 

normal distribution is defined as:  

𝒩(𝑋|𝜇, ∑) =
1

(2𝜋)
𝑛
2√|∑|

𝑒𝑥𝑝−
(𝑋−𝜇)𝑇∑−1(𝑋−𝜇)

2  

Where 𝜇  (mean) is the n dimensional vector, ∑is 

the covariance matrix of 𝑛 ×  𝑛 and|∑| as the 

determinant of  ∑  (Hastie et al., 2009).  

Posterior for Kernel and bias parameters – This 

represents our updated belief about the kernel and 

bias parameters of the model after observing the 

data (Martin, 2016). The posterior was defined by 

a standard normal distribution that contains 

trainable parameters as it represents our belief 
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after observing the data. The normal distribution 

is defined as:𝑓(𝑥)  =  
1

𝜎√2𝜋
𝑒𝑥𝑝

−
1

2
(

𝑥− 𝜇

𝜎
)

2

 

Where 𝜎  is the standard deviation and 𝜇 is the 

mean (Hastie et al., 2009).  

Kullback-Leibler Divergence – This was used to 

measure the divergence of the prior and posterior 

distributions (Joyce, 2011; Winastwan, 2020). In 

this study the 𝐷𝐾𝐿(𝑃 ∥ 𝑄) was precisely used to 

measure the information gained by revising our 

beliefs from the prior distribution 𝑄 to the 

posterior distribution 𝑃. The Kullback-Leibler 

divergence is defined as:𝐷𝐾𝐿(𝑃 ∥ 𝑄) =

 ∑ 𝑃(𝑥) log(
𝑃(𝑥)

𝑄(𝑥)
)𝑥𝜖𝑋  

Where 𝑃 and 𝑄 are probability distributions 

(Joyce, 2011).  

A DenseReparameterization layer was used as one 

of the last layers in the BCNN architecture to take 

epistemic uncertainty into account. Similar to the 

Convolutional2DReparameterization layer, the 

following were defined: a) Prior distribution for 

Kernel and bias parameters, b) Posterior 

distribution for kernel and bias parameters, and c) 

Kullback-Leibler divergence. The 

DenseReparameterization was then fed into a one 

hot categorical layer consisting of 2 units to 

represent the Normal and Cataract category.  

Model Hyper-parameters  

The BCNN model was compiled using the 

negative log-likelihood loss function and an 

Adam optimizer with a learning rate of 0.001 

trained over 100 epochs. The standard CNN was 

compiled with the same hyper-parameters except 

for the loss function. A categorical cross entropy 

loss function was used for the standard CNN.  

Evaluation 

The accuracy metric was used to measure how 

accurately the model(s) can classify the image 

categories. Accuracy is defined as the number of 

correct classifications over the total number of 

classifications given by equation below (Tayal et 

al., 2021; Zhang et al., 2024): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Where TP – is True Positive, TN – is True 

Negative, FP – is False Negative and FN – is False 

Negative.  

 

 

 

Experiment Setup  

Two experiments were conducted to observe the 

generalizability of the BCNN model to new 

datasets. Experiment one consisted of tuning the 

number neurons in each layer. In experiment two, 

the learning rate was tuned per BCNN model. The 

model checkpoint method was utilized to save 

models with the best validation accuracy.  
 

4. Experiments and Results 

a) Model Performance 

The standard CNN model was built as a 

benchmark model for classification results 

comparison with the BCNN model using the 

accuracy metric. The standard CNN and BCNN 

models were trained over 100 epochs using an 

Adam optimizer with a 0.001 learning rate. The 

Standard CNN model achieved a 95% accuracy 

while the BCNN model achieved a 93.16% 

accuracy. Both models achieved comparable 

accuracy results in comparison to existing studies 

that utilized CNN architectures to predict ocular 

disease categories. The BCNN model results over 

100 epochs are shown in Figure 5. The standard 

CNN demonstrates a better accuracy performance 

in correctly classifying the Normal and Cataract 

category. However, what is not known is how 

certain the standard CNN model is in correctly 

classifying each category. Thus, the 

implementation of a BCNN model to account for 

the uncertainties present in classifying the Normal 

and Cataract category.  

 

 
Figure 5: BCNN Model Accuracy and Loss for 

train and validation set over 100 epochs 

 

b) Experiment Results 

The experiments conducted in this study was to 

get a sense of how the BCNN model would 

generalize to new unseen data. Due to this, the 

validation accuracy was observed throughout the 

two experiments. Validation data was utilized in 

the experiments as it provides the first test against 
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unseen data. Table 1 and 2 provides a summary of 

the results obtained in experiment 1 and 2.  

 

Table 1: Experiment 1 Results-Tuning number 

of neurons in hidden layers 

BCN

N 

Mod

el 

Epoch 

Checkpo

int 

Validati

on 

Accurac

y 

Learni

ng 

Rate  

Numb

er of 

neuro

ns per 

Hidde

n 

Layer 

1 37 70.00% 0.05 64 

2 55 65.00% 0.05 128 

3 53 72.50% 0.05 256 

 

The experimental results in Table 1 demonstrated 

that a significant increase in the number of 

neurons per hidden layer gave a higher validation 

accuracy achieved at epoch 53 in comparison to 

64 neurons increase in BCNN model 2.  

 

Table 2: Experiment 2 results-Tuning learning 

rate 

BCNN 

Model 

Epoch 

Check-

point 

Validati

on 

Accurac

y 

Learni

ng 

Rate  

Numb

er of 

neuron

s per 

Hidde

n 

Layer 

1 25 93.75% 0.001 32 (1) 

+ 64 

(2) 

2 85 65.00% 0.005 32 (1) 

+ 64 

(2) 

3 55 63.75% 0.01 32 (1) 

+ 64 

(2) 

4 87 67.50% 0.05 32 (1) 

+ 64 

(2) 

 

The experimental results in Table 2 shows that the 

validation accuracy was at its highest with a 

93.75% accuracy when the learning rate was 

0.001. The BCNN models demonstrated better 

generalization with a learning rate of 0.001 and 

0.05 as greater validation accuracies were 

achieved in comparison to the 0.01 and 0.005 

learning rate used.  

 

 

c) Cataract Classification: Use Case 

Two cataract images from the test set are 

classified to demonstrate the use of a Bayesian 

CNN model. In Bayesian modeling, predictions 

are made by sampling values from the posterior 

distribution (Martin, 2016). Given this, each 

image was predicted by sampling values from the 

BCNN model's posterior distribution. In this 

study, the BCNN model classified each image 300 

times, drawing 300 samples from the posterior 

distribution. A 97.5% prediction interval was 

calculated for each image, representing the range 

within which 97.5% of the sampled predictions 

fell, thereby providing a robust measure of the 

model's uncertainty. A narrow prediction interval 

indicates high certainty in the predictions, 

whereas a wider interval points to greater 

uncertainty. Additionally, the prediction intervals 

and the distribution of the 300 sampled 

predictions were visualized for each image. This 

visualization helps in understanding the spread 

and central tendency of the predictions, thereby 

providing a clear picture of the model's 

uncertainty.  

 

 
Figure 6: Cataract Image Prediction Case 1 – High 

Certainty 

 

As shown in Figure 6, the BCNN model correctly 

predicts the Cataract category with an average 

percent of 99.08% with a 97.5% probability that 

the Cataract probability lies between 95.2% - 

99.97%. The predictions were made with high 

certainty as the model demonstrated high certainty 

in assigning very high probability values to the 

Cataract category and very low probabilities to the 

Normal category as indication of the prediction 

outcome belonging the Cataract category. The 
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high certainty in case 1’s prediction suggests a 

strong confidence in the model’s diagnostic 

capabilities. In terms of clinical decision making, 

predictions with high certainty can result in: 

• Immediate action: clinicians can proceed with 

a high degree of confidence in the diagnosis 

of cataracts. 

• Streamlined workflow: Patients with high 

certainty can be prioritized for treatment, 

which can lead to an efficient allocation of 

resources. 

  

As shown in Figure 7, the BCNN model correctly 

predicts the Cataract category with an average 

percent of 54.64% with a 97.5% probability that 

the Cataract probability lie between 0.04% - 

99.97%. The Normal category is also shown to 

have probability values ranging from 0.03% – 

99.96%. This prediction demonstrates the 

existence of aleatoric and epistemic uncertainty. 

The aleatoric uncertainty is shown as the BCNN 

model also predicts the Normal category with 

high probability values. The epistemic uncertainty 

is shown as the BCNN model itself is uncertain of 

how big of a probability value each category 

should be predicted with. In terms of clinical 

decision making, predictions with high 

uncertainty can result in: 

• Signal for review: high uncertainty cases 

should be flagged for additional review by 

ophthalmologists, ensuring that uncertain 

diagnoses are carefully evaluated. 

• Request for additional testing: clinicians 

might order further diagnostic tests to clarify 

uncertain cases, reducing the risk of 

misdiagnosis.  

 

 
Figure 7: Cataract Image Prediction Case 2 

Bayesian approaches offer significant advantages 

in terms of quantifying uncertainty and improving 

the reliability of predictions in medical image 

analysis. They provide valuable tools for risk 

assessment and help in making more informed 

clinical decisions. However, the computational 

complexity, scalability issues, and the need for 

careful selection of priors present notable 

challenges. Balancing these advantages and 

limitations is key to effectively leveraging 

Bayesian methods in medical imaging 

applications 

 

6. Conclusion 

Cataract is the most common eye disease in the 

world. If it is not detected at an early phase, it can 

cause blindness. Early detection and classification 

are the most effective ways to reduce the danger 

and avert painful surgery. Conventional deep 

learning techniques for automated disease 

detection have been popularly used. However, 

they present the challenges of overfitting on 

smaller datasets and being unable to provide 

reliability estimates of the model predictions. 

Thus, the purpose of this research was to 

investigate the usefulness of BCNN for the 

classification of cataract. BCNN as an automated 

detection method is an effective technique for 

cataract image classification. It aids in the goal of 

preventing cataracts early and improving the 

diagnostic efficiency of clinicians. The proposed 

approach was trained and tested on the Ocular 

Disease Intelligent Recognition (ODIR) dataset 

containing 5000 patient’s fundus images for both 

eyes and doctors’   diagnostic keywords. The best 

BCNN model produces an accuracy of 93.16 % 

and validation accuracy of 92.50%, which is 

comparable to other studies and indicates 

promising results BCNN has to offer in the field 

of ocular disease classification and detection. It is 

vital to improve deep learning interpretability, 

that further could also lead to prompt 

implementations in cataract analysis. More 

experiments can be conducted in the future to 

investigate the effects of image augmentation, 

image resizing, class imbalance handling, model 

checkpoint (validation loss), and the use of 

techniques such as transfer learning on this work. 

Moreover, additional research using larger 

datasets and encompassing various ocular 

diseases is essential to solidify the effectiveness of 

these approaches. This can lead to an increase in 

the accuracy of model prediction by avoiding data 

scarcity and creating more accurate data models 

with less data overfitting.  
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