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Abstract 

Concept-based explainers for convolutional neural 

networks (CNNs) provide human-understandable 

explanations by revealing what the CNN sees, rather 

than merely indicating where it looked. However, their 

performance is limited by the reducer at its core and 

adversarial attacks. Although CNN classification 

performance may be enhanced by some image 

transformations in small amounts whereas intense 

image transformations can cause noticeable variations 

to CNN predictions, it is uncertain how explainers 

perform in such cases. This paper investigates the 

performance of state-of-the-art concept-based 

explainers at different levels of adversarial attacks for 

the first time. We achieve this by exploring different 

image transformations as adversarial attacks, including 

Gaussian noise, elastic transform, rotation, and contrast 

on the ILSVRC2012 dataset. Our study shows that 

image transformation techniques altering only image 

coordinates have little impact on classifier and 

explainer performance, whereas methods modifying 

image pixels, such as elastic transform and contrast, 

significantly affect performance, akin to introducing 

Gaussian noise. Our work underscores the significance 

of scrutinizing explainers during their development and 

adoption for CNNs. 

Keywords: Convolutional neural networks, adversarial 

attacks, concept explanations, fidelity, image 

transformation 
 

1. Introduction 

 
 Convolutional Neural Networks (CNNs) have 
revolutionized the field of computer vision, driving 
advancements in image classification, object detection, 
and other critical applications (Rathod et al., 2022). As 
these models are increasingly deployed in various 
domains, concerns about trust, accountability,  
regulatory compliance, transparency, safety, etc. 
underscore the importance of understanding their 

decision-making processes through qualitative and 
quantitative methods (Kim et al., 2018; Poppi et al., 
2021). While attribution-based methods like Gradcam 
offer insights into where a CNN looked by highlighting 
the contributing pixels to a CNN’s outcome, they require 
domain expert intervention and make them susceptible 
to bias. They also produce inaccurate pixel importance 
estimates in large CNN models (Chakraborty et al., 
2022; Preechakul et al., 2022; Salahuddin et al., 2022). 
Contrary to attribution-based methods that merely 
highlight regions of interest, concept-based explainers 
provide insights into what a CNN saw, revealing the 
specific concept1 that influences the CNN's decisions 
(Fel et al., 2023; Ghorbani et al., 2019; Kim et al., 2018; 
Zhang et al., 2021). However, their performance is often 
constrained by the type of reducer2 used and their 
susceptibility to adversarial attacks, which can 
significantly undermine their reliability (Chakraborty et 
al., 2022). 

1A concept is defined as a high-level representation of a pattern or an 
abstract idea within an image class, e.g. “stripes”.  
2A reducer is a dimensionality reduction method used by a concept-based 
explainer for automatically discovering high-level concepts from a 
CNN’s activation map. 

Figure 1. Impact of increasing the additive Gaussian 

noise levels to three dissimilar images from MNIST 

dataset (Xiao et al., 2017). The inter-class similarity 

increases as additive noise increases. 
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Adversarial attacks pose a significant influence on 
the performance of CNNs (Chen et al., 2018; Xiang et 
al., 2021), however, to the best of the author’s 
knowledge, the inherent impact of such adversarial 
attacks on explainers is understudied. While previous 
works suggest that introducing subtle perturbations can 
enhance CNN performance, extreme adversarial attacks 
may impede CNN performance. CNN performance can 
vary under different image transformations due to 
factors like transformation complexity, dataset size, and 
CNN architecture (Karimi et al., 2020). For instance, 
Figure 1 illustrates the impact of increasing the additive 
noise levels to three dissimilar images, causing the 
interclass variance to diminish and causing a reduced 
classifier performance. On a different note, there is a 
dearth of comprehensive studies on the robustness of 
concept-based explainers under such adversarial 
conditions. This gap in the literature is critical, as the 
effectiveness of explainers in adversarial scenarios 
directly impacts their practical utility and reliability, 
especially for cases where inter-class variance is low 
(Akpudo et al., 2023a, 2023b). Adversarial attacks 
undermine trust in AI systems and pose significant 
security risks in critical applications like autonomous 
vehicles or medical imaging. Explainers help in 
understanding why adversarial attacks succeed. If deep 
models can be easily fooled by imperceptible changes, 
users are less likely to trust their decisions, impacting 
adoption and deployment in real-world scenarios. By 
examining the model's decision-making process for 
adversarial attacks, users can gain insights into the 
vulnerabilities exploited by attackers. Conversely, 
adversarial attacks challenge the reliability of 
explanations provided by CNNs, as explanations 
derived from perturbed inputs may differ significantly 
from those derived from original inputs. 

This study addresses this issue by investigating the 
performance of state-of-the-art concept-based 
explainers under varying levels of adversarial attacks 
and makes the following contributions:  

 We demonstrate a comprehensive analysis 
of the impact of various adversarial image 
transformations on the performance of 
concept-based explainers. We provide 
empirical evaluation using the ILSVRC2012 
dataset to quantify the effects of additive 
noise, rotation, and warping on both CNN 
classifiers and their explainers.  

 We provide insights into the relative 
robustness of concept-based explainers 
under various adversarial conditions and 
guiding their development and deployment 
in real-world scenarios. 

 

2. Background 

 

2.1. Review of SOTA Concept-based Explainers 

Earlier concept-based explanation methods require 
pre-defined concept banks, which are more challenging 
to learn than the target classes they aim to explain 
(Ramaswamy et al., 2023). This reliance limits their 
utility and the trust placed in them. Recent advances take 
a different approach: they integrate reducers into CNN 
architectures for automatic concept discovery without 
human supervision (Ghorbani et al., 2019; Nauta et al., 
2023; Zhang et al., 2021). These advances have 
significantly improved CNN explanations, eliminating 
the need for pre-defined concept banks (Fel et al., 2023; 
Ghorbani et al., 2019; Zhang et al., 2021).  

In a pioneering effort, Ghorbani et al. (Ghorbani et 
al., 2019) introduced the ACE framework, which 
involves segmenting class images into three levels, 
clustering similar segments based on Euclidean 
distance, rejecting outliers, and extracting important 
concepts. However, the outlier rejection phase may 
result in the loss of meaningful information, and the 
discovered concepts may assign different importance 
weights to instances of the same explanation case. More 
recent works like Zhang et al. (Zhang et al., 2021) and 
Fel et al. (Fel et al., 2023) both proposed the use of NMF 
as reducers in their ICE and CRAFT frameworks 
respectively. While the ICE framework offers 
significant performance, the CRAFT framework (Zhang 
et al., 2021) introduced recursivity into its concept 
decomposition process for producing enhanced concept 
explanations.  

Other works (Brocki and Chung, 2019; N. Liu et al., 
2023) have also been proposed with generative models 
at their core. Amidst their performance, generative 
models necessitate fine-tuning and further interpretation 
due to their black-box nature (Takeishi and Kawahara, 
2020). Also, the perceptual similarity metrics derived 
from generative models often do not align with human 
perception (Zhang et al., 2016) and these contribute to 
even further interpretability issues beyond the CNN they 
aim to explain. 

2.2. Automatic Concept Discovery 

Performing classification with a CNN 𝐸(·) ∶  𝑋 →
𝑌   involves a supervised learning process where images 
(𝑥1, . . . , 𝑥𝑛) ∈  𝑋n  are trained with their associating 

labels (𝑦
1
, . . . , 𝑦

𝑛
) ∈  𝑌n  (He et al., 2016). Figure 2 

illustrates the typical concept-based explanability 
framework for CNNs, revealing the key components of 
the explainer in the light blue box. 𝐸(·) can be split into 
two parts: the convolutional part 𝑓(·) for feature 
extraction and the linear classifier 𝐶(·) (with trainable 
weights 𝑡 ) for label predictions, such that 𝐸(𝑥𝑖)  =
 (𝑓 ◦ 𝐶)(𝑥𝑖)𝑓(𝑥𝑖) produces the high-dimensional 

activation map 𝒜𝑙
m×c

 ≡  ℎ𝑙
𝑘(𝑥𝑖) ⊆  ℝ+

 at layer l of k 

layers (𝒜𝑙
m×c ≥  0) and m = n×h×w, where h, w are 

the feature map size, c is the number of channels, and n 

is the number of examples). 𝒜𝑙
m×c

  contains the most 
discriminative features from which concepts can be 
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discovered automatically using a concept-based 
explainer with a reducer N such as non-negative matrix 
factorization (NMF), principal component analysis 
(PCA), K-means, etc. at its core (S. Liu and Chen, 2021; 
Mendez, 2023). 

A typical concept-based explainer receives {𝑥1, 𝑦1}, 

and 𝐸(·)  from which 𝒜𝑙
m×c  is produced. It then 

employs ℕ to produce a lower dimensional 

representation 𝑆m×𝑐′
⊆  ℝ+

 of 𝒜𝑙
m×c

 and the concept 

activation vectors (CAVs) 𝑃c×𝑐′
⊆  ℝ+

, with a minimal 

loss u such that 𝒜𝑙
m×c

 =  𝒮m×𝑐′

𝒫c×𝑐′
+ 𝑢, such that 𝑐′  

≪ c (𝑐′ = user-defined number of concepts). Given the 

complex structure of 𝒜𝑙
m×c

, the main objective of N is 

to extract discriminative information stored in =  𝒮m×𝑐′
 

and 𝒫c×𝑐′
 (Kim et al., 2016, 2018; Zhang et al., 2021). 

 

2.3. Concept Importance Estimation 

The rationale for concept-based explanation for 
CNNs is rooted in the need to make the decision-making 
process of CNNs more interpretable and understandable 
to humans. To achieve this, both qualitative and 

quantitative checkpoints are necessary. While 
qualitative explanations can be produced via prototypes, 
quantitative checkpoints provide further validations for 
the explainer’s performance. The method testing with 
concept activation vectors (TCAV) method (Kim et al., 
2018) provides a reliable approach for computing the 

concept importance 𝒲 𝑦𝑖  ⊆  ℝ𝑐′
 as the directional 

derivative of 𝐶(·) with respect to 𝒫 in layer l, such that: 

𝜕𝐶𝑙,𝑦

𝒫𝑙
=  𝑙𝑖𝑚

ℎ𝑙
𝑘(𝒜𝑙

m×c+ ϵ𝒫𝑙)− ℎ𝑙
𝑘(𝒜𝑙

m×c)

ϵ
             (1) 

where the estimated concept weight 𝒲𝑦𝑖 ∈ℝ𝑐′×1
= 𝒫 ·

𝑡  for CAV P for a target class 𝑦𝑖  following a global 

average pooling of 𝒜𝑙
m×c

. 

2.4. Adversarial Attacks and Explainers 

Adversarial attacks in intense amounts can 
significantly impact the reliability and trustworthiness of 
concept-based explainers for CNNs. Some of these 
impacts may include misleading explanations, reduced 
interpretability, erosion of trust, bias amplification, 
compromised explainer robustness, and uncertainty 
(Xiang et al., 2021). While some studies show that in 
small amounts of image transformations as adversarial 

Table 1. Adversarial attacks and their parameters. 

Adversarial attack, 𝓗(𝒙𝒊) Parameters 

Gaussian noise  

Elastic transform  

Rotation  

Contrast  

μ = 0; σ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 

λ = 0.5, α = {20, 40, 60, 80, 100, 120, 140, 160, 180, 200} 

τ = {36, 72, 108, 144, 180, 216, 252, 288, 324, 360} 

β = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0} 

 

 

 

Figure 2. Illustration of a typical concept-based explanation for CNNs. The reducer generates the concepts and 

CAVs {𝒮, 𝒫} from the activation map 𝒜𝑙
m×c produced by the concept extractor 𝑓(·). The inverse reducer helps 

compute the Fidelity 𝒵 of the explainer while the classifier helps compute the concept importance 𝒲𝑦𝑖 . 
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attacks such as additive noise, CNN classification 
performance may be enhanced and for certain types of 
image transformations, the CNN classification 
performance is barely affected (Chen et al., 2018). This 
is because image transformations that corrupt image 
pixels by directly altering the pixel values cause the 
images to deviate from looking like the classes they 
typically belong to. 

In contrast, image transformations that only 
recalculate each pixel’s coordinates affect the position 
of each pixel but do not directly alter the pixel values 
themselves. This boils down to saying that the 
performance of CNNs can vary under image 
transformations due to factors like transformation type, 
intensity of transformation, transformation complexity, 
dataset size, and CNN architecture (Karimi et al., 2020). 
It becomes imperative to study how explainers perform 
under these dynamics. 

2.5. Performance Evaluation 

We utilize the fidelity assessment method as outlined 
in (Zhang et al., 2021). Fidelity, in this context, is used 
as a measure of the explainer’s faithfulness, aiming to 
quantitatively evaluate how closely the explainer’s 
predictions align with those of the CNN model under 
different adversarial attacks 𝐻(·). This is achieved by 
calculating the average relative error between their 
predictions. Given E(·) and the approximate model 

𝐸̂(·) = 𝐶𝑙  (ℕ′ (ℕ (𝑓
𝑙
(𝑋)))),  Fidelity 𝒵 is measured 

as: 

𝒵(𝐸̂((𝑥𝑖)) =
# {𝑥𝑖 ∈X | 𝐸(ℋ(𝑥𝑖))= 𝐸̂(ℋ(𝑥𝑖))} 

# {X}
           (2) 

 

3. Experiment 

 
We utilize the ILSVRC2012 (ImageNet Large Scale 
Visual Recognition Challenge 2012) dataset, a 
benchmark dataset in computer vision consisting of over 
1.2 million images across 1,000 object categories 
(ImageNet, 2012). The images were normalized and 
resized to 224× 224 to ensure consistency and fairness 
in evaluating different image transformations. We also 
follow recommendations from (Ramaswamy et al., 

2023) and choose c′= 32. Figure 3 shows the concept 

explanations for the classes Australian Kelpie and a 
Chihuahua without adversarial attacks. For readability, 
only the four most important concepts are displayed in 
each case. Overall, the discovered prototypes for each 
concept (represented by IDs) are representative of the 
image class being explained. For each concept 

explanation (row), the 𝒲 scores and their contribution 

are also recorded. The 𝒵  reveal a high explainer 
faithfulness. 

We explore the effects of different image 
transformations including Gaussian noise, rotation, and 

elastic transform on the performance of ICE and CRAFT 
frameworks respectively. We tested them on a pre-
trained ResNet50 model and then summarized the 
different adversarial attacks and the different ranges for 
each of them in Table 1. Figure 4 shows some of the 
concept explanations under the adversarial attacks while 
Figure 6 shows the overall performance of the explainer 
under the different adversarial attacks summarised in 
Table 1. We maintained 𝑐′ = 32  and recorded the 
classification test accuracy of the ReNet50 model 

𝐴𝑐𝑐, 𝒲, and 𝒵 scores respectively. 

As shown in Figures 4(a, b, d), similar concepts 

produce different prototypes with decreasing 𝐴𝑐𝑐,  𝒲, 

and 𝒵, whereas the effect of rotation on the concept 

Figure 3. The four most important explanations 

produced by ICE (Zhang et al., 2021) explainer for 

Australian Kelpie (top) and Chihuahua (bottom) for a 

ResNet50 model. 
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explanations produced is unique to each case as 
shown in Figures 4(c), revealing a small impact of 
rotation on 𝐴𝑐𝑐  and 𝒵  scores, amidst increasing 

degrees of rotation. The significant impact of noise, 
contrast and elastic transform on classifier (and 
explainer) performance is justified because such 
adversarial attacks directly alter the image pixel 
values while rotation recalculates each pixel’s 
coordinates without altering them. 

Figure 6 reveals that the explainer’s faithfulness is 
affected by adversarial attacks that alter the pixel values 

Figure 4. Australian kelpie’s explanations by ICE 

(Zhang et al., 2021) explainer at different adversarial 

attacks (a) Gaussian noise, (b) elastic transform, (c) 

rotation, and (d) contrast. 

Figure 5. The impact of different adversarial attacks on 

ICE (Zhang et al., 2021) explainer’s faithfulness for 

two dog breeds (a) Gaussian noise, (b) elastic 

transform, (c) rotation, and (d) contrast. 

Figure 6. The impact of different adversarial attacks on 

CRAFT (Fel et al., 2023) explainer’s faithfulness for 

two dog breeds (a) Gaussian noise, (b) elastic 

transform, (c) rotation, and (d) contrast. 
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of images as shown in Figures 6(a, b, and d) but not 
affected by adversarial attacks that only affect the 
position of the image pixels as shown in Figure 6(c). 
These results highlight the necessity of thorough 
evaluation and scrutiny of explainers during their 
development to ensure their robustness against 
adversarial manipulations. By providing empirical 
evidence of the vulnerabilities in concept-based 
explainers, our work underscores the need for enhanced 
methodologies to safeguard their reliability in real-world 
applications. 

4. Discussions, Drawn Insights and Future Works 

In large amounts, image transformations that alter the 

pixel values introduce imperceptible changes to the 

images, leading to misclassification by a CNN model. 

Concept-based explainers might attribute the decision to 

features that are not semantically relevant but were 

perturbed. The downside is that explainability methods 

relying on feature importance or concept activation 

might incorrectly highlight non-relevant features or 

concepts due to adversarial perturbations (Akhtar, N., & 

Mian, A., 2018). Despite being in its early stages, our 

work offers insights into what a CNN sees and 

investigates such explanations by exploring the 

explainer’s performance under different image 

perturbations as adversarial attacks.  

Targeted attacks that aim to cause a specific 

misclassification by a CNN have a different effect. 

Explainability methods may provide explanations that 

reflect the targeted class rather than the true class of the 

adversarial example (Gilmer, J., et al., 2018). As a result, 

concept-based explainers might struggle to differentiate 

between features indicative of the true class and features 

highlighted by the adversarial attack. This is also the 

case for transferability attacks where adversarial 

examples crafted for one CNN model can fool other 

CNN models. Explainability methods might produce 

different explanations for the same adversarial example 

across different models (Dombrowski, J., et al., 2020). 

As a result, concept-based explainers may provide 

inconsistent or misleading explanations if the 

adversarial example is transferred to a different model 

architecture (Samek, W., et al., 2017).  

The potential risks from adversarial attacks 

underscore the importance of more robust explainers for 

CNNs in real-world applications. Adversarial attacks 

undermine trust in AI systems and pose significant 

security risks in critical applications, impacting adoption 

and deployment in real-world scenarios. Therefore, 

developing more robust explainers for CNNs is crucial 

for their reliable deployment in real-world applications 

to ensure their resilience against adversarial attacks, 

robustness for interpreting CNN complexity, acceptable 

trade-off between interpretability and accuracy, 

maintain acceptable computational costs, maintain 

ethical and legal compliance, and provide human-

centred explanations. 

While these are yet to be extensively studied 

empirically, future works would aim at exploring in 

addition to and combination with image 

transformations, targeted and transferability attacks on 

concept-based explainers for CNNs. We also aim to 

explore paradigms towards standardizing concept-based 

CNN explanations. 

 

5. Conclusion 

 
This study investigates the performance and robustness 
of state-of-the-art concept-based explainers under 
various adversarial attacks, revealing the significant 
impact these perturbations have on both classifiers and 
their explainers. Using the ILSVRC2012 dataset, the 
experiments demonstrate that adversarial attacks like 
Gaussian noise, contrast, and elastic transformations can 
substantially degrade the fidelity of concept-based 
explainers, unlike adversarial attacks that only alter 
image pixel coordinates, such as rotation. Additionally, 
CNN classifiers and their explainers were found to be 
minimally affected by different transformations, with 
non-pixel-altering attacks having less impact on 
accuracy. The findings underscore the importance of 
rigorous adversarial testing of explainers to ensure 
reliability and practical utility, providing guidelines for 
deploying robust explainers and calling for future work 
on enhancing their resistance to attacks. This contributes 
to making deep learning models more transparent, 
trustworthy, and robust, addressing the demand for 
accountable AI systems.  
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