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Abstract 

Deep learning-based models (e.g., ResNet18 and 

ResNet50) have been employed for detecting COVID-

19 on chest-X-ray (CXR) images which have been 

reported to achieve good accuracy. Although these 

models have the ability to correctly classify the CXR 

images from the dataset COVID-Xray-5k into COVID-

19 and non-COVID-19 classes, our investigation shows 

for the first time that the good results obtained by 

existing methods may come from regions out of the 

lungs area on the images from this dataset. It is an 

unsolved problem that the regions used to make such 

decisions are automatically located in the lung area 

where the evidence of COVID-19 is to be found. To this 

end, this paper proposes an interpretable protocol for 

COVID-19 detection on CXR images. The proposed 

protocol not only improves the prediction performance 

but more importantly increases interpretability and trust 

of such prediction without the need of any region 

annotation. The proposed protocol is a learning strategy 

that can be applied to any convolutional neural 

networks (CNN) models. The experimental results 

demonstrate the superiority of the proposed strategy 

over the related state-of-the-arts. 

Keywords: COVID-19, Deep Learning, Chest X-Ray, 

Trustable Learning Strategy 
 

1. Introduction 
The rare pandemic caused by novel corona-virus has 
resulted in millions of deaths and countless infectious 
patients. The critical step to control the spread of the 
virus is to detect all positive cases as early as possible. 
Reverse transaction polymerase chain reaction (RT-
PCR) was considered as the main method for COVID-
19 diagnosis (Wang et al., 2020). However, the accuracy 
of RT-PCR positive detection of throat swab samples is 
less than 60% (Yang et al., 2020). Chest radiographs 
from the cases of COVID-19 infections show airspace 
opacities, which refer to ground-glass (57%) and mixed 

attenuation (29%) (Kong & Agarwal, 2020). These 
abnormal airspace opacities are highly correlated with 
COVID-19 (Kanne et al., 2020). Therefore, the previous 
studies (Ahsan, Based, Haider, & Kowalski, 2021; Chen, Yao, 
Zhou, Dong, & Zhang, 2021; Hammoudi et al., 2021; Ke, 
Ellsworth, Banerjee, Ng, & Rajpurkar, 2021; Minaee et al., 
2020; Ozturk et al., 2020; Rajpurkar, Joshi, Pareek, Ng, & 

Lungren, 2021; Shorfuzzaman & Hossain, 2020) tried to 
employ deep learning techniques for automatic 
recognition of COVID-19 from chest-X-ray (CXR) 
images and many works (Minaee et al., 2020) obtain the 
prominent performance (e.g., a recall of 98% for 
ResNet50). 

It is worth noting that CXR images are from are from 
real patients in hospitals. Medical equipment, such as 
pacemakers, electrodes, and cardiogram monitors, are 
essential to healing patients. The letters can indicate the 
photographing time and patients’ gesture so they are 
necessary for the clinical diagnosis. Hence, it is 
reasonable that pacemakers, electrodes and letters exist 
on CXR images. For example, the CXR images obtained 
from the public CheXpert dataset (Irvin et al., 2019) 
contain letters, electrodes and pacemakers. In the 
published dataset COVID-Xray-5k (Minaee et al., 2020), 
electrodes, pacemakers and letters are unevenly 
distributed on 84 COVID-19 training samples. However, 
letters, electrodes and pacemakers are not the intrinsic 
features of any disease. They should be viewed as 
interferences when deep learning-based models are 
trained using data containing this interference 
information. For deep learning-based models in Deep- 

Table 1. The Number and Proportion of Training 

Images with Interference and without Interference 
No 

Interference 

Interference 

Arrows Electrodes Pace 

makers 

Letters 

13 10 34 12 58 

15.48% 11.90% 40.48% 14.29% 69.05% 
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COVID (Minaee et al., 2020), there are only 13 images 
out of 84 training images (15.48%) without any 
interference (see Table 1.). 71 images out of 84 training 
images (84.52%) with interferences are used for training 
the models. Because the models are trained on a large 
number of images with interferences, interferences are 
likely to be used for predicting COVID-19. For instance, 
the electrodes are likely to be determined as unique 
features on COVID-19 images. In this way, images 
containing electrodes may be diagnosed with COVID-
19 positive cases during testing. Furthermore, there are 
many organs on CXR images such as the liver, the heart, 
and the stomach. The liver or stomach is possible to be 
viewed as the support for COVID-19 detection. 

To verify the above possibilities, we follow the 
methods introduced in (Minaee et al., 2020) and then get  
a recall of 94% for ResNet18 and a recall of 96% for 
Resne50. The recall of 94% means 94 images out of 100 
COVID-19 test samples are predicted as positive cases 
by using ResNet18; The recall of 96% means 96 images 
out of 100 COVID-19 test samples are predicted as 
positive cases by using ResNet50. We utilises CAM 
(Zhou et al., 2015) to visualize which regions to support 
COVID-19 diagnosis on 94 positive cases and 96 
positive cases respectively. As shown in Table 2, 75.53% 
of 94 positive cases in ResNet18 indicate that the regions 
supporting COVID-19 are not relevant to lungs and 
83.33% of 96 positive cases in ResNet50 indicate that 
the regions supporting COVID-19 are out of the range 
of lungs. As pneumonia caused by novel corona-virus is 
a lungs disease, the nidus (e.g., ground-glass and mixed 
attenuation) should appear in the area of lungs. Hence, 
both deep learning-based models (i.e., ResNet18 and 
ResNet50) do utilize irrelevant medical information for 
predicting COVID-19 which may lead to the wrong 
prediction. 

The models should utilize the medical information 
from the lungs for predicting COVID-19. By now, it is 
unsolved that regions that are highly related to the lungs 
are identified automatically without region annotation 
from bounding boxes or segmentation masks. To this 
end, this paper proposes an interpretable protocol. The 

proposed protocol is a two-stage learning strategy. 
Firstly, the area highly associated with the lungs are 
automatically exposed to the maximum extent. Secondly, 
a CNN-based model is designed to learn the 
representative information from the area exposed in the 
first stage. Our main contributions can be summarized 
as follows:  

• The proposed protocol can be widely adopted 
by any CNN based models for lungs disease 
diagnosis from CXR images. 

• The proposed strategy induces models to 
discover the area of lungs on CXR images 
without extra help from bounding boxes and 
segmentation masks.  

• The experiment results illustrate that our 
method can obtain not only a better performance 
than (Minaee et al., 2020) but a more 
trustworthy result. 

 

2. Related Work 

Many studies use AI models to detect COVID-19 by 

using CXR images. Wang and Wong (Wang et al., 2020) 

propose COVID-Net to diagnose COVID-19 from CXR 

images. Apostolopoulos and Mpesiana (Apostolopoulos 

and Mpesiana, 2020) use transfer learning algorithm to 

detect coronavirus infection from CXR images. Hossain 

(Hossain et al. 2020)  proposes a healthcare framework 

that can interpret the diagnosis of COVID19 by 

extracting discriminative features relevant to COVID19. 

Abbas et al. (Abbas et al. 2021) use the pretrained CNN 

models such as ResNet (He et al., 2016) for diagnosis of 

COVID-19 from CXR images. Deep-COVID (Minaee 

et al., 2020) predicts COVID-19 from CXR images 

using transfer learning algorithm and generate heatmaps 

of lung regions potentially infected by coronavirus by 

using the perturbation method. 

 

3. Our Method 

The proposed strategy contains two main stages. The 

first stage is regions selection. The second stage is 

regions guided training. The two stages will be 

introduced in detail as follows. 

3.1 Regions Selection 

The ground truth labels have been divided into two 

categories (COVID-19 and non-COVID-19) in 

COVID-Xray-5k (Minaee et al., 2020). It is worth 

noting that both categories of CXR images use 

posteroanterior (PA) chest view. In this way, an image 

obtained from the non-COVID-19 group can be 

compared with an image from the COVID-19 group 

under the same local regions. Take the liver as an 

example, the liver is located at the left bottom corner of 

a PA chest image. The comparison of the left bottom 

Table 2. The Proportions of Test Images About 

Features to Support COVID-19 Using Deep-COVID 

Method Features ResNet18 ResNet50 

Liver 18.9% 5.20% 

Heart 12.76% 26.04% 
Stomach 

 
5.31% 11.45% 

Neck and Low Jawbone 4.25% 3.12% 

Acromioclavicular Joint and 

Axilla 

 

20.21% 30.20% 

Mediastinum 

 
9.57% 5.20% 

Arrows and Electrodes 

 
5.31% 2.08% 

Features irrelevant to the lung 75.53% 83.33% 
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corner regions between COVID-19 samples and no-

finding subclass samples can reveal the changes in the 

liver. 

Since the abnormalities (i.e., the ground-glass and 

mixed attenuation) only occur in the lungs, there should 

be no significant difference in the comparison of the 

regions representing the liver, the stomach, and the 

shoulders. In other words, if a comparison at the local 

regional level shows a significant change, it means that 

the regions participating in the comparison are highly 

likely to be located at the lungs. As all the chest 

radiographs are obtained from real patients in hospitals, 

the interferences (i.e., pacemakers, electrodes and 

letters) appear at relatively fixed locations on PA chest 

images from both categories because of the 

requirements of diagnosis and treatment. It is worth 

noting that the comparison can decrease the probability 

that the regional changes caused by the above 

interference happen. 

In this paper, 𝐼 represents an input image, 𝑓 denotes 

a feature extractor, 𝑓(𝐼) represents the corresponding 

feature map, 𝑅 is an arbitrary real number. We flatten a 

feature map 𝑓(𝐼)  ∈  𝑅𝑐×ℎ×𝑤 , 𝑐  is the number of 

channels, ℎ  and 𝑤  are height and width respectively. 

We can get 𝑛 (𝑛 = ℎ × 𝑤) vectors 𝑉 ∈ 𝑅𝑐 . A feature 

map 𝑓(𝐼) is flattened by the fixed orders. The 

horizontal order is from the left side to the right side in 

a row while the vertical order is from the top row to the 

bottom row. So, each vector has a natural label 𝑖 that is 

used to represent the corresponding region 𝑖 ∈ [0, 𝑛 −

1]. 𝑉𝑖 is used to represent the vector from the region 𝑖. 

𝑉𝑖
𝑐𝑜𝑣𝑖𝑑denotes the vector from COVID-19 images; 𝑉𝑖

𝑛𝑜 

represents the vector from non-COVID-19 samples. 

region𝑖
𝑛𝑜 and region𝑖

𝑐𝑜𝑣𝑖𝑑are used to represent region 𝑖 

from non-COVID-19 images and COVID-19 images 

respectively. 

 A full-connected layer is employed as a classifier 𝑆, 
and then the classifier 𝑆 , as shown in Figure.1, is trained 
with the help of loss function as follows, 

   lossregion 𝑖 = crossentropy ((𝑉𝑖
𝑐𝑜𝑣𝑖𝑑⨀𝑆), 𝑖)       () 

where classifier S is a matrix, 𝑉𝑖
𝑐𝑜𝑣𝑖𝑑  is a vector, ⨀ 

denotes matrix multiplication. 

  loss = ∑ lossregion i
𝑛−1
𝑖=0    () 

In this way, a trained classifier 𝑆′  is obtained. The 
trained classifier 𝑆′ is actually a matrix with 𝑛 rows and 
𝑐 columns. 𝑆′[𝑖] represents the vector of row 𝑖 (𝑆′[𝑖] ∈
𝑅𝑐). The aim of training is to make the loss defined in 
(2) as small as possible. When 𝑙𝑜𝑠𝑠region i is close to 

zero, it means inner product < 𝑆′[𝑖], 𝑉𝑖
𝑐𝑜𝑣𝑖𝑑> is much 

larger than inner product < 𝑆′[𝑖], 𝑉𝑗
𝑐𝑜𝑣𝑖𝑑 > (𝑗 ≠ 𝑖, 𝑗 =

0,1. . 𝑛 − 1). In other words, it means 𝑆′[𝑖] is close to 

𝑉𝑖
𝑐𝑜𝑣𝑖𝑑  and far away from other region vectors 

𝑉𝑗
𝑐𝑜𝑣𝑖𝑑(𝑗 ≠ 𝑖, 𝑗 = 1,2, … 𝑛 − 1) . The classification 

score vector 𝑉𝑠𝑐𝑜𝑟𝑒  can be aculated by 𝑉𝑠𝑐𝑜𝑟𝑒 =
𝑉𝑖

𝑛𝑜 ⨀ 𝑆′ , where ⨀  denotes matrix multiplication 
operation. The score vector 𝑉𝑠𝑐𝑜𝑟𝑒 consists of 𝑛 scalars. 
Each scalar is denoted with ℎ𝑖(𝑖 = 1,2, … 𝑛 − 1) . So 
𝑉𝑠𝑐𝑜𝑟𝑒 = [ℎ0, ℎ2, … , ℎ𝑛−1] . We define function ℎ𝑖 =
𝐻(𝑖), 𝑖 = 0,1, … 𝑛 − 1.The classification mechanism of 
CNN based Neural Network is to look for the largest 
scalar from a score vector and the location index of the 
score vector is seen as the predicted label. Therefore, the 
predicted label 𝑖′ for region 𝑖  form non-COVID19 
images is calculated as 

 𝑖′ = argmax(𝐻(𝑖)), 𝐻(𝑖) ∈ {ℎ𝑖|𝑖 = 0,1,2. . . 𝑛 − 1} () 

where 𝑖 is ground truth label, 𝑖′ represents predicted 
label.  <,> represents inner product.  If 𝑖′ = 𝑖, it means 
< 𝑉𝑖

𝑛𝑜, 𝑆′[𝑖] > is much larger than < 𝑉𝑖
𝑛𝑜, 𝑆′[𝑗] > (𝑗 ≠

𝑖, 𝑗 = 1,2, … 𝑛 − 1) . In other words, 𝑉𝑖
𝑛𝑜  is closer to 

𝑆′[𝑖]. Because 𝑆′[𝑖] is close to 𝑉𝑖
𝑐𝑜𝑣𝑖𝑑 accoring to the 

above analysis, 𝑉𝑖
𝑛𝑜  is close to 𝑉𝑖

𝑐𝑜𝑣𝑖𝑑  and far away 

from 𝑉𝑗
𝑐𝑜𝑣𝑖𝑑(𝑗 ≠ 𝑖, 𝑗 = 1,2, … 𝑛 − 1).  𝑉𝑖

𝑐𝑜𝑣𝑖𝑑  and 𝑉𝑖
𝑛𝑜 

have the similar digital distribution in 𝑐  dimensional 

vector space. Because 𝑉𝑖
𝑐𝑜𝑣𝑖𝑑  and 𝑉𝑖

𝑛𝑜  are both local 
regions feature descriptor, they are from the same region 
𝑖.Because both categories of CXR images use PA chest 
view, the same regions from different images reflect the 
anatomy information from the same part of human boy. 
Therefore, the nidus should not be exist in region 𝑖. If 
𝑖′ ≠ 𝑖, <𝑉𝑖

𝑛𝑜, 𝑆′[𝑖] > > is not larger than <𝑉𝑖
𝑛𝑜, 𝑆′[𝑗]>(≠

𝑖, 𝑗 = 1,2, … 𝑛 − 1). 𝑉𝑖
𝑛𝑜is far way from 𝑆′[𝑖]. So, 𝑉𝑖

𝑛𝑜 

is also far way from 𝑉𝑖
𝑐𝑜𝑣𝑖𝑑 because 𝑆′[𝑖] is close to 

𝑉𝑖
𝑐𝑜𝑣𝑖𝑑. It shows that although 𝑉𝑖

𝑐𝑜𝑣𝑖𝑑and 𝑉𝑖
𝑛𝑜 are from 

the same region 𝑖, they do not have the similar digital 

Figure 1. Overview of Regions Classification 
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distribution. The dissimilarity between 𝑉𝑖
𝑐𝑜𝑣𝑖𝑑and 𝑉𝑖

𝑛𝑜  
is likely to be attributed to the nidus in the region 𝑖 from 
COVID19 images. It also means that the region 𝑖  is 
associated with lungs probably. Our method in the first 
stage aims at discovering the regions irrelevant to nidus 
for all CXR images. Testing single one image cannot 
make sure that it is impossible that the nidus appears at 
region 𝑖 for all CXR images in dataset. It is possible that 
region 𝑖 from one image contains the nidus while region 
𝑖 from another image doesn’t contain the nidus. On the 
other hand, scale difference or translational difference 
existing in both categories of images may make 
prediction error ( 𝑖′ ≠ 𝑖 ) happen. Therefore, it is 
necessary to test all non-COVID19 images from training 
data. K denotes the number of all non-COVID19 images 
from training data. For region 𝑖 ( 𝑖 = 0,1, … 𝑛 − 1) , 

𝑉𝑖
𝑛𝑜𝑘

(𝑘 = 1,2. . 𝐾)  represents local descriptor of region 
𝑖  from k-th non-COVID19 image. The following 
Equation is used to compute FREQUENCY[𝑖]: 

FREQUENCY [𝑖] =
∑ 𝑡𝑘

𝑖K
𝑘=1

K
, 𝑡𝑘

𝑖 = {
1, 𝑖′ ≠ 𝑖
0, 𝑖′ = 𝑖

 

From the aspect of statistics, nidus occurrence can be 
seen as a stochastic event with a high probability. The 
frequencies of prediction error across all regions are 
calculated and sorted in descending order of the 
frequency of prediction error in every region. Thus, a 
chat of frequency distribution is shown in Figure 2. The 
confidence interval is set to 1 − 𝛼 (𝑎 is the significance 
level). Finally, 𝑚  regions with the highest frequency 
values are calculated as the following Algorithm 2. 

3.2 Regions Guided Training 

In the first stage, 𝑚 regions are obtained by comparison 
between two categories of images only from training 
data. In the second stage, both two categories of images 
are used for training a new model, 𝑚 regions will be 
utilized to make a one-hot mask. The mask will be 
applied to the feature map extracted from an image from 
the training data.  It will play a role of filters in removing 
all regions irrelevant to nidus on the feature map. 
Actually it will be embedded into the model. In testing 
phase, it will impact the feature map extracted by model 
from a testing image. It is worth noticing that the mask 
is derived from training data rather than testing data.  It 
will work on each image from both training data and 
testing data. On the other hand, once 𝑚 regions have 
been selected in the first stage, the regions associated 
with nidus do not vary for each  image from training set. 
In other words, the mask will be formed by using 
𝑚 regions. It will be applied to each image equally. The 
one -hot mask is constructed by using 𝑚 regions. Firstly, 
𝑚  regions are denoted by 𝛽 = {frequency𝑗|𝑗 =
0,1,2, … , 𝑚 − 1},  the one-hot mask is a matrix, which 
is denoted by M ∈ 𝑁ℎ×𝑤  , where N denote a natural 

number, h *w=n and h=w. Naturally, h=w=√𝑛. Given 
FREQUENCY and index is region number, M can be 
constructed by the following Algorithm3. 

A new backbone network is employed as the feature 
extractor 𝑓 , 𝑓𝐼(𝑖, 𝑗)  represents the corresponding local 
feature vector at 𝑖 row and 𝑗 column in feature map 𝑓(𝐼) 
from image 𝐼 . The new feature map 𝑓′(𝐼)  can be 
obtained by calculating the elementwise product 
(Hadamard product) between 𝑓(𝐼)  and matrix M  as 
follows, 

 𝑓𝐼
′(𝑖, 𝑗) = 𝑓𝐼(𝑖, 𝑗) × M(𝑖, 𝑗) () 

Algorithm2: Compute m 

ResNet50 function(frequency, 𝛼, n) 

   for m=1→n 

       if 1 − 𝛼 ≤
∑ frequency j

𝑚−1
𝑗=0

∑ frequencyj
𝑛−1
𝑗=0

then return m 

   return -1 

note: frequencyj > frequencyj+1(𝑗 = 0,1,2, 𝑛 −

2). 𝑗 represents a ranking number rather than a 

region number. 

Algorithm3: Construct M 

ResNet50    for x=0→w-1 

       for y=0→ y-1     

           if FREQUENCY[𝑥 ∗ 𝑤 + 𝑦] ∈ 𝛽 then 

                   M(𝑥, 𝑦) = 1 

           else M(𝑥, 𝑦) = 0 

   

Figure 3. Overview of regions guided training. 

Figure 2.  Frequency distribution for the prediction error 

across all regions. 

2024 International Conference on Intelligent and Innovative Computing Applications (ICONIC)
7th-9th November 2024, Pearle Beach Resort & Spa, Flic en Flac, Mauritius

Page 25 of 270



The Hadamard Product between 𝑓(𝐼) and matrix M  can 
be defined as   

𝑓′(𝐼) = 𝑓(𝐼) ∘ M  () 

Thus, 𝑓′(𝐼) is the region guided feature map that only 
utilizes the feature information relevant to pneumonia. 

Only 𝑚  regions participate in the process of final 
classification, so the final feature vector 𝑉′(𝐼) should be 
formed as 

 𝑉′(𝐼) =
∑ ∑ 𝑓𝐼

′(𝑖,𝑗)𝑤−1
𝑗=0

ℎ−1
𝑖=0 

𝑚
 () 

Finally, 𝑉′(𝐼)  is fed into a full-connected layer to 
generate the prediction score pred ∈  𝑅2 . A cross-
entropy lost function is employed for training under the 
supervision of ground-truth label truth . The loss is 
defined as  

 loss = crossentropy(pred, truth) () 

which is minimized during training by using a 
stochastic gradient descent algorithm. Fig.3 shows a 
sample that illustrates the whole process of regions 
guided training. The matrix 𝑀 plays a role of filter that 
removes the irrelevant regions from the feature map 
extracted from the original image  𝐼  in the training 
process. The irrelevant regions should be excluded from 
engaging in prediction. Therefore, the mask should be 
employed as a filter in the testing process so that the 
predicted results are trustworthy. 

4. Experiment 

 

4.1 Dataset and Data Augmentation 

The published dataset COVID-Xray-5k (Minaee et al., 
2020) consists of the COVID-19 group and the non-
COVID-19 group. There are 5,184 PA chest X-ray 
images in this dataset. The COVID-19 group contains 
184 images from COVID Chestxray Dataset (Cohen et 
al., 2020). 84 COVID-19 images are used for training 
and 100 images are used for testing. The non-COVID-
19 group collects 5,000 images including 14 subclasses 
from the public ChexPert dataset (Irvin et al., 2019). 
2,000 samples are used for training and 3,000 images 
are prepared for testing. The no-finding subclass is one 
of 14 subclasses. 2,000 images for training include 700 
images from the no-finding subclass and 100 images 
from each remaining 13 subclasses. 3,000 images for 
the test are composed of 1,700 images from the no-
finding subclass and 100 images from each remaining 
13 subclasses. 

  The COVID-19 training set has much fewer images 
(84 images) than the non-COVID-19 training set (2,000 
images), resulting in the problem of data imbalance. The 
model trained on an imbalance dataset will result in a 
lower recall or precision in the category with fewer 

training samples. To balance the data, data 
augmentations techniques are employed to make equal 
numbers of two categories of images. The new images 
are created with the help of random transformed 
operations (e.g., brightness changing, contrast changing, 
and erasing). It worth mentioning that the created images 
are used only in the second stage (regions guided 
training). In the stage of regions selection, 84 original 
COVID-19 samples are used to train the classifier 𝑆. For 
the sake of the high frequency of prediction errors, 700 
training samples from the no-finding subclass are chosen 
as the test set for the first stage. If we choose 84 COVID-
19 images as the test set, the amount of test samples is 
too few to exhibit statistical significance.  

Table 1 The Comparison of Results of ResNet18 for Cut-

off Threshold 0.2 

Metrics ResNet18 

(Deep-Covid) 

ResNet18(ours) 

α=0.05 α=0.1 

Recall 

(Sensitivity) 

94.00% 98.00% 97.00% 

Specificity 97.10% 100% 99.90% 

Precision 51.93% 100% 97.00% 

Accuracy 97.00% 99.93% 99.80% 

Average 

precision 

90.94% 99.93% 99.89% 

AUC 99.55% 99% 98.45% 

 

4.2 Hyperparameters and Experiment 

Environment 

In images pre-processing, all images are resized into 
224× 224 and normalized regularly before being fed 
into the neural network. No crop tools are adopted for 
all images. ResNet18 and ResNet50 are employed as 
the feature extractors in both stages after the last 
average pooling layer and the last full-connected layer 
are removed. In the stage of regions selection, the 
number of all regions is 49 (n=49) because the height 
and width of a feature map are 7. The batch size is set 
to 23 and the base learning rate is 0.0002 for training in 
the first stage. Adam is chosen as the optimizer and the 
learning rate is updated by multiplying a factor of 0.1 
every 10 steps. For training, the training set is chosen 
for validation and the validation accuracy is computed 
in each epoch. The criteria to stop training is the 
validation accuracy is 100% and the loss value defined 
in Equation (2) is smaller than 0.01. The criteria can 
guarantee the model has been trained well. Thus, the 
number of epochs is dynamic. For testing, we set 
confidence interval to 0.95 and 0.90 (𝑎= 0.05 and 0.1 
respectively). In the stage of regions guided training, the 
batch size is set to 20 and the base learning rate is 
0.0001. SGD is the primary optimizer. The learning rate 
is updated every 10 steps by multiplying a factor of 0.1. 
The momentum is set to 0.9. The total number of epochs 
is 100. It is worth mentioning that non-COVID-19 
images from the test set include both normal cases (no- 
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finding subclass) as well as other types of diseases. The 
non-COVID-19 images with other disease type make it 
much more difficult to distinguish from COVID-19 
samples than normal samples, a cut-off threshold to the 
prediction probability score is used to deal with this 
difficulty (Minaee et al., 2020). It means if the 
prediction probability score for a test image is larger 
than the cut-off threshold, the test image is predicted as 
COVID-19; otherwise, it is considered as non-COVID-
19. In this work, the cut-off threshold is used as well, 
and it is set to 0.2. The implementation is done in 
Pytorch 1.8 and Python 3.6. The Python library used for 
data augmentations is Augmentor 0.2.8. The 
experiment is executed on a server providing 4 NVIDIA 
RTX 2080 TI GPU with 128 G memory and an Intel i9 
CPU. 

4.3 Experimental Results 

The proposed algorithm is compared with the Deep-

COVID method introduced in (Minaee et al., 2020) by 

using Resnet18 and Resnet50. The comparisons about 

the results yielded by the following two approaches are 

exhibited in Table 3 and Table 4. The metrics used for 

comparison include recall (sensitivity), specificity, 

precision, accuracy, average precision, and Area Under  

Figure 4. The comparison of heatmap between Deep-

Covid method and our method. 

the Curve (AUC). According to the results of the 

experiments, the proposed approach is much better than 

the Deep-COVID method. The results shows the 

proposed method can make the models focus on learning 

the feature information highly associated with nidus in 

the lungs and exclude as much irrelevant information as 

possible. Figure 4. visualize which regions are used for 

COVID-19 detection with CAM by using both methods. 

Table 5 shows the proportion of test images about 

features from a feature map. This issue is expected to be 

solved in the future works. 

5. Conclusion 

In this work, we propose an interpretable protocol to 

assist CNN-based models to learn the trustable 

discriminative feature information for COVID-19 

diagnosis from CXR images. The proposed protocol is 

a novel learning strategy by which ResNet models will 

be able to discover the regions highly associated with 

lungs automatically without any extra help (such as 

bounding boxes or segmentation masks). Our method 

Table 2. The Comparison of Results of ResNet50 for 

Cut-off Threshold 0.2 

Metrics ResNet50 
(Deep-

Covid) 

ResNet50(ours) 

α=0.05 α=0.1 

Recall 

(Sensitivity) 

96.00% 99.00% 100% 

Specificity 97.10% 100% 99.93% 

Precision 52.75% 98.02% 98.04% 

Accuracy 97.10% 99.90% 99.94% 

Average 

precision 

92.97% 99.96% 99.99% 

AUC 96.57% 99.47% 99.97% 

Table 3. The Proportion of Test Images about Features 

to Support COVID-19 Using Our Method. 

Features ResNet1

8 (α=0.1) 

ResNet50 

(α=0.1) 

Liver 0 0 

Heart 35.42% 32.29% 

Stomach 

 
4.17% 2.08% 

Neck and Low Jawbone 3.13% 3.13% 

Acromioclavicular Joint 

and Axilla 

 

0 3.13% 

Mediastinum 

 
3.13% 11.46% 

Arrows and Electrodes 0 0 
Features irrelevant to the 

lungs 
45.85% 52.09% 

 Original 

Images 

Deep-Covid Ours (α=0.10) 

Resnet18 Resnet50 Resnet18 Resnet50 
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can help ResNet18 and ResNet50 networks to obtain a 

superior performance despite being trained on the CXR 

images with interference. Furthermore, the results are 

more trustworthy than the related state-of-the-arts, as 

the visualization with CAM illustrates. 
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