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Abstract 

Collective behaviour empowers biological species 

to achieve remarkable swarm level results through 

distributed actions. For example, social spiders 

achieve coordinated activities that can lead to 

plausible outcomes such as preying, mating, or 

building webs. Developers of simulated swarm 

systems are increasingly moving away from 

insinuating individualistic robotic devices, 

gravitating towards collective swarms to achieve 

common goals. However, for this to happen, it is 

imperative to understand the principles that 

underpin successful simulated coordination of 

robotic devices in swarms. In this article, we 

investigate the principles behind artificial swarm 

systems built on the instinctive behaviours of 

simulated social spider-like devices (SS-bots). We 

classify these principles into six interconnected 

knowledge domains, including (a) environment, 

(b) SS-bot architecture, (c) SS-bot mission 

planning, (d) SS-bot communication, (e) SS-bot 

operators, and (f) metadata and swarm-level data. 

The key features of each domain are discussed, 

and an SS-bot ontology is proposed.  
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1. Introduction 

Swarm intelligence is about large multi-agent 

systems demonstrating emergent behaviour 

beyond the scope and abilities of the individual 

swarm members. In this context, emergent 

behaviour is about the creation of swarm-level 

outcomes from the individual actions of the 

members of the swarm (Chibaya, 2014). This 

phenomenon is, commonly, observed in natural 

social groups such as herds, ant colonies, flocks, 

bee swarms, fish schools, or social spider swarms. 

Although it is desirable to harness the principles 

that govern swarm intelligence in different 

scenarios and interpret the individual-level 

actions of the swarm members into practical 

computational routines, we will firstly require 

scrupulous apprehension of the representation of 

such low-level actions and how they cause 

emergent behaviour. An understanding of the 

computational semantics and clear interpretation 

of the low-level actions of swarm members will 

valuably inform proper knowledge representation 

before we can solemnize swarm intelligence as a 

practical problem-solving approach. The quest to 

understand the basis of swarm intelligence in 

different contexts, pursuit to pinpoint the key 

vocabulary used by swarm members, as well as 

the desire to formalize knowledge representation 

in the context of swarm intelligence, are the key 

motivating factors for undertaking this study. 

Although this article focuses on a case study 

scenario of the understanding of social spider-like 

robotic devices (SS-bots) in swarms, we hope to 

contribute a methodology that can be mapped to 

the understanding of other forms of swarm 

intelligence systems. 

Studies aimed at understanding the principles 

behind swarm intelligence, pinpointing the factors 

that cause emergent behaviour, and identifying 

the key factors in the formation of emergent 

behaviour are gradually gaining popularity (James 

et al., 2015; Cheraghu et al., 2021). Intriguing is 

the interest by researchers to investigate even the 

extension of such knowledge to the coordination 

of swarms of heterogeneous members (Saffre et 

al., 1999). Swarms of heterogeneous members can 

deal with complex mission too challenging for 

human to perform (Saffre et al., 1999; Tan and 

Zheng, 2013), tasks that may present a mammoth 

assignment to a swarm of homogeneous members 

(Abosaif and Elrofai, 2020). For example, what 

form of swarm intelligence can achieve a search 

and rescue mission in a collapsed mine? What 
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form of swarm can be deployed to retrieve bodies 

in piles of rubble after an earthquake to search 

through the wreckage? Search mission in these 

circumstances may require heterogeneous swarms 

whose members are built from different 

perspectives. For example, such swarms may 

comprise ant-like members for robust and fault-

tolerant search (Melaine et al., 2020), as well as 

bee-like members for a waggle-dance inspired 

recruitment (Cheraghu et al., 2021; Carrillo-

Zapata et al., 2020) of other members when it 

becomes necessary. Swarms of heterogeneous 

members are better when homogeneous swarms 

or human may fail to endure (Abosaif and Elrofai, 

2020) because such members' working efficiency 

may be much better (Carrillo-Zapata et al., 2020). 

We understand heterogeneity to emanate from 

putting together several homogeneous swarms 

(Melaine et al., 2020). One way to achieve 

heterogeneity is by gradually building and 

integrating homogeneous perspectives. If we can 

create and formalize the representation of distinct 

categories of homogeneous swarms, emphasizing 

the key principles in each case, concepts, data, and 

meta-entities of the homogenous swarms, then 

heterogeneity can emanate. We refer to such 

formalized representation of swarm intelligence 

knowledge as a swarm intelligence ontology. 

Precisely, swarm intelligence ontologies capture 

the vocabulary, semantics, and the relationship 

between the actions of the individual swarm 

members which trigger emergent behaviour (Li et 

al., 2017; Bock, 2013). A swarm intelligence 

ontology, therefore, can vitally define the key 

components of a swarm system, including the 

knowledge shared, process through which swarm 

knowledge is generated, managed, used, and 

stored. It can define the diverse formats of the 

knowledge produced and how swarm members 

interpret the meanings of such knowledge. 

Additionally, a swarm intelligence ontology may 

enable logical use of knowledge to allow 

inferences, discoveries, and decision-making. It 

would potentially define the security aspects at 

individual member level, bringing about context 

awareness. A swarm intelligence ontology should, 

thus, reinforce internal state management, as well 

as tracking the influences of the actions of the 

individual members of the swarm on the emergent 

behaviour thereto. The overall goal of a swarm 

intelligence ontology is to therefore, eventually, 

and gradually, evolve into a swarm language 

(James et al., 2015; Saffre et al., 1999).  

Hopefully, new swarm intelligence applications 

may ensue from the birth of swarm intelligence 

ontologies. Similarly, successful development of 

homogeneous swarm intelligence ontologies will, 

potentially, propel the growth of heterogeneity 

towards better interoperability and reusability in 

swarm systems.  

1.1. Problem statement 

Arriving at a swarm intelligence ontology for 

coordinating heterogeneous swarm members is an 

ambitious task. It involves understanding discrete 

swarm intelligence ontologies for coordinating 

homogeneous swarm members. For example, an 

arbitrary swarm of heterogeneous members could 

comprise ants, termites, bees, social spiders, fish, 

or birds. In that case we would need to understand 

an ontology for each type of swarm member 

before we merge the several homogeneous 

ontologies into a generic ontology that supports 

heterogeneity. This article is written with the hope 

of arriving at such an ontology in mind.  

The behaviour of social spiders in nature is 

fascinating. As a starting point, we tackle the 

problem of creating a homogeneous swarm 

intelligence ontology for coordinating spider-like 

robotic devices, here referred to as SS-bots. The 

hope is that heterogeneity will ensue when, in 

future, new ontologies are added to this proposed 

body of knowledge. 

1.2. Overview 

We envision the collective behaviour of SS-bots 

as based on individual decision making and local 

interactions policies (James et al., 2015; Li et al., 

2017; Bouriot and Chevrier, 2020). Collective 

behaviour is only visible at swarm level (Saffre et 

al., 1999; Abosaif and Elrofai, 2020) though it is 

generated at individual SS-bot level. Little has 

been documented on the nature of the low-level 

actions and the information SS-bots share. The 

mechanisms in which SS-bots share information, 

and the dynamics involved in their decision-

making to cause emergent behaviour are blurred. 

In this case, coordination refers to cooperative 

actions and movements of SS-bots towards a goal 

(Melaine et al., 2020). Precisely, coordination in 

the context of SS-bots is about resolving a search 

problem (Bouriot and Chevrier, 2020).  

Little is known about SS-bots' ability to emulate 

vibrations and emulate them through simulated 
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communal webs (James et al., 2015). While the 

actions of SS-bots, such as decision-making, 

communication, interaction, and generation of 

vibrations are the key ingredients of the emergent 

behaviour thereto, how do we holistically 

represent SS-bots’ knowledge in computational 

terms? How do we formalize such knowledge 

representation for reproducibility and further use?  

This study seeks to pinpoint the component units 

of a swarm intelligence ontology for coordinating 

SS-bots. The proposed swarm intelligence 

ontology involves conceptualization of mission 

planning, SS-bots internal states, communication, 

and metadata issues. It involves the representation 

of SS-bot reasoning and their architectural design. 

Also, it entails abstracted representation of the 

environment in which SS-bots operate, depicting 

the environment as the shared memory for the 

swarm. Additionally, the ontology captures the 

representation of any uncertainty, incompleteness, 

and inconsistencies in the swarm information and 

knowledge. Consequently, global level policies 

such as global awareness, and any decision-

making made at swarm level are also recorded in 

the ontology, defining SS-bot context reasoning. 

The aim of this work is to present an informed 

understanding of the prospective vocabulary of 

SS-bots to enhance practical use, application, and 

visibility of this knowledge domain in problem-

solving. Hopefully, representation of the proposed 

SS-bots ontology creates new content in the field. 

Section 2 presents related work in which attempts 

to understand the design of swarm intelligence are 

discussed. We focus on discussion emphasizing 

swarm member interactions, communication, and 

decision making. Section 3 identifies the key 

underlaying principles of SS-bot coordination. In 

Section 4, we further describe the identified 

knowledge domains of the SS-bots. In section 5, 

we highlight the contributions we make, as well as 

pointing towards the direction for future work. 

 

2. Related Works 

SS-bots inspired swarm systems function under 

uncertainty (Abosaif and Elrofai, 2020). They 

equally rely on the environment, SS-bots, data for 

decision-making, action planning, and interaction 

among the SS-bots. The key information needed 

by the SS-bots is created within the swarm by 

other SS-bots (St-Onge et al., 2020) or by prey. 

There have been ongoing efforts to formalize the 

design principles underlaying such swarms to then 

solemnize knowledge representation officially in 

this domain (Zhaoyu et al., 2020). However, we 

first require a concise understanding of the 

features of the environments, data and its storage, 

as well as an apprehension of the mechanisms in 

which shared memory emerges.  

Representation of swarm knowledge using an 

ontology has been recommended (Li et al., 2017). 

In doing so, focus is commonly on pinpointing 

swarm characteristics, dominant design features, 

popular contexts, SS-bots interaction strategies, 

mission planning policies, and prevalent decision-

making approaches. Notably, literature focuses on 

understanding swarm processes under uncertainty 

while noting common constraints and any gaps. 

2.1. Related Ontologies 

An ontology captures the creation, representation, 

storage, relationships, and access to knowledge 

(Bock, 2013). The task to create an ontology is a 

requirements elicitation exercise where we also 

stipulate the functional categories, properties, 

rules, policies, and the relationships between all 

the aspects of the ontology (Li et al., 2017; Bock, 

2013). In swarm intelligence terms, an ontology 

emphasizes swarm capabilities, SS-bots abilities, 

and those environment features that influence the 

SS-bots’ behaviours (Tan and Zheng, 2013). 

Bids to create swarm intelligence ontologies are 

ongoing. For example, a multi-agent ontology-

based system was combined with a business rule 

management system (Sadik and Urlker, 2014) and 

produced plausible distributed control solution to 

the cooperative manufacturing problem (Navarro 

and Matia, 2013). To do so, it treated the ontology 

as a conceptual tool to represent mutual 

understanding between manufacturing work 

entities (Carrillo-Zapata et al., 2020). Another 

ontology was created and merged with a support 

vector machine for data clustering (Li et al., 

2017). In both cases, accurate feedback was noted.  

Standardization of knowledge representation in 

robotics was also achieved using a core ontology 

for robotics and automation (CORA) (Navarro 

and Matía, 2013). Here, robotic devices required 

explicit knowledge representation (James et al., 

2015). However, environment aspects were 

excluded from the key elements of the ontology 

(Bock, 2013). However, all other abstract 

representation of the SS-bots actions, interactions, 

events, and hardware were clear (Bock, 2013). 

Also, inferential procedures for operating on the 
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data were commonly considered (Li et al., 2017). 

In addition, and in most cases, emphasis has been 

placed on improving SS-bots autonomy rather 

than enabling cooperation and coordination 

(Navarro and Matia, 2013). The focus has been, 

often, to enable simpler SS-bots interactions 

(Srikanth and Sridhar, 2020), enabling knowledge 

transfer between SS-bots and the environment, 

representing the key operations, mission planning 

policies, and detailing the architecture of SS-bots 

(St-Onge et al., 2020).  

Other ontologies are mere references to collective 

behaviour (Melaine et al., 2020), providing 

models of systems and the environments thereof, 

supporting interactions between the system 

objects and the environment, and stipulating the 

behaviour of system objects which change the 

environment (Srikanth and Sridhar, 2020). A few 

other ontologies provided semantic formalization 

(Bock, 2013). However, application-specific 

ontologies are predominantly conceived as too 

specific and limited to cover generalized 

requirements. Such ontologies are regarded as too 

complex (Bock, 2013), which impedes use in 

generalized contexts (Li et al., 2017). Most 

ontologies in this category assume deterministic 

worlds that lack any possibility of uncertainty, 

incompleteness, or inconsistences in the data 

(Carrillo-Zapata et al.,2020; Bock, 2013).  

Although discrete swarm intelligence ontologies 

exist, the inferred natural inspiration and the 

methods followed in their creation differ. Even 

though we cannot pinpoint a standard way of 

creating these ontologies, six principles are 

common. (1) Ontologies need clarity. This means 

that the terms of the ontology should be clear, 

independent, and objective. (2) Also, ontologies 

should be coherent. In this case, inferences should 

be consistent with the terms of the ontology. (3) 

Additionally, ontologies should be extensible. 

This refers to possibilities of scaling the ontology 

horizontally and vertically. (4) More so, an 

ontology should embrace modularity. This refers 

to an ontology being divisible into modules with 

relevant purposes. (5) Ideally, an ontology may 

bring about minimal bias. In this case, the 

description of terms should not rely on a specific 

encoding approach. (6) In all cases, minimal 

ontological commitment should be evident. This 

means that the ontology should support 

knowledge sharing with minimal constraints to 

allow flexibility. 

We acknowledge the likelihood of diversity 

between the swarm intelligence ontologies 

discretely built from different inspiring social 

colonies. We thus seek to understand the various 

stand-alone homogeneous swarm intelligence 

ontologies as building blocks of the generalized 

versions. As a starting point, we investigate the 

aspects of a swarm intelligence ontology with 

which to coordinate swarms of SS-bots.  

2.2. Modelling uncertainty 

An aspect of swarm intelligence systems that is 

often ignored in most discussions is consideration 

of uncertainty (Li et al., 2017) and information 

incompleteness when SS-bots make decisions. 

However, ontologies that consider information 

ambiguity, randomness, vagueness, inconsistency 

and fuzzy are noticed in the literature (Evangeline 

and Abirami, 2019). Often, mathematics theories 

are used to handle such uncertainty through fuzzy 

logic, Bayesian networks, or Markov networks. 

Vagueness is better handled using fuzzy logic (Li 

et al., 2017; Cuevas et al., 2013). On the contrary, 

randomness, inaccuracy, and incompleteness are 

best tackled using probabilistic views (Li et al., 

2017). However, mathematical approaches focus 

on annotation (Li et al., 2017), and not resolution 

of the problems in uncertain contexts. As such, 

approaches to annotate and support reasoning 

under uncertainty are still upcoming. IN 

proposing the SS-bot ontology, we keep the need 

for reasoning under uncertainty in mind. 

2.3. Modelling swarm context 

In this case, the term context is synonymous with 

the environment. A swarm intelligence ontology 

should include the environment, SS-bots, actions, 

and interactions between SS-bots (Cheraghu et al., 

2021; Bouriot and Chevrier, 2020). Although 

contexts are often domain-dependent (Melaine et 

al., 2020), they are all modelled as grids with rows 

and columns that intersect to form positions 

(Saffre et al., 1999). For SS-bots, the web is a key 

component of the context (James et al., 2015). In 

nature, a web is a non-geometrical network of silk 

lines that form a horizontal hammock (Saffre et 

al., 1999). A web represents the plan (Tan and 

Zheng, 2013) followed by the swarm. The 

positions on the web represents feasible solutions 

to the optimization problem (James et al., 2015). 

SS-bots can move freely on the web. Each SS-bot 

holds a position, and the quality of the solution 

pursued is based on the objective function 
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represented by the potential to find the goal 

(Melaine et al., 2020). SS-bots cannot leave the 

web because positions outside the web are 

infeasible. Consequently, the web forms the 

shared memory for the swarm.  

2.4. Modelling the SS-bot 

The design and capabilities of the SS-bot are 

essential. Most designs of robotic devices imitate 

social colonies (Abosaif and Elrofai, 2020). For 

example, ant colony systems mimicked the 

foraging behaviour of ants (Li et al., 2017). Work 

on SS-bots, in the past, imitated social spider 

walking pattern (James et al., 2015). In most 

cases, simulations aim explain the behaviour 

exhibited at individual levels that causes swarm-

level behaviour (James et al., 2015). Concern is 

mainly on the "how?" aspect and not the "why?". 

However, what are the required behavioral 

elements of SS-bots sufficient to explain the 

swarm intelligence that emanates. What are the 

low-level activities of SS-bots which causes 

emergent behavior? How does an SS-bot 

communicate, decide, generate information, 

represent, and store related knowledge? How can 

we mimic SS-bots in computational terms?  

An understanding of SS-bots knowledge, and 

apprehension of the relationship between SS-bots 

and their contexts can allow the formalization of 

an SS-bots ontology. The notion that SS-bots 

complete tasks with limited perception inspire us 

(James et al., 2015). Knowledge that SS-bots 

make probabilistic choices with little knowledge 

of the context is compelling (Saffre et al., 1999). 

We notice that most decisions are based on the 

information held in the environment, bringing 

about stigmergic swarm coordination (Tan and 

Zheng, 2013; Cheraghu et al., 2021). There is no 

global organization. All SS-bots are homogeneous 

simple and autonomous (Melaine et al., 2020). 

These SS-bots features are elaborated below. 

2.4.1 Structural design 

SS-bots are classified by gender (James et al., 

2015; Carrillo-Zapata et al., 2020; Navarro and 

Matía, 2013). Male and female SS-bots co-exist 

(Navarro and Matia, 2013). Female counterparts 

often outnumber the male by about 70%. Male SS-

bots are separated into dominant and non-

dominant (Cuevas et al., 2019). Dominant male 

SS-bots have better fitness and can reproduce by 

mating with the female neighbours (Melaine et al., 

2020). Non-dominant male SS-bots remain close 

to other male, relying on the dominant males for 

nutrition (Srikanth and Sridhar, 2020; James et al., 

2015; Cuevas et al., 2013). Female SS-bots can 

attract or repel the male counterparts (Abosaif and 

Elrofai, 2020). Eventually, emergent behaviour 

arises, such as weaving (Bouriot and Chevrier, 

2020), preying (Abosaif and Elrofai, 2020), 

homing, or mere searching (Bouriot and Chevrier, 

2020). Emergent behaviour results from the 

activities of the individual SS-bots that contribute 

to the creation of the shared memory on the 

environment (Abosaif and Elrofai, 2020).  

Each SS-bot has a weight assigned to it based on 

its fitness (Cuevas et al., 2019). Weights are 

compared to determine the best fir SS-bot around 

(Kamath et al., 2018). The worst counterparts are 

noted (Kamath et al., 2018). Also, every SS-bot 

has a position and can generate vibrations. 

Positions are candidate solutions. Therefore, a 

female SS-bot’s next step is influenced by the 

nearest best, context, and the global bests SS-bot 

in the swarm. 

2.4.2 SS-bots communication 

A specific population of SS-bots is initialized in 

the environment (James et al., 2015; Tan and 

Zheng, 2013). Socialization between SS-bots is an 

ingredient for cooperation and convergence. 

Vibrations are SS-bots’ mode of communication 

(Carrillo-Zapata et al., 2020; Cuevas et al., 2013). 

Each SS-bot seeks to get information about the 

positions of other SS-bots based on the vibrations 

it receives. The web is the communication channel 

(Cuevas et al., 2013; Talamala et al., 2020). 

Movement around the web is triggered and 

orientated by vibrations. Information about the 

location of preys or mating possibilities are 

communicated through the web (Perez et al., 

2016). The intensity of the vibrations is important. 

It depends on the distance of the source (Navarro 

and Matía, 201; Zhao et al., 2021), the curiosity of 

the vibration source, and vibration attenuation 

over the distance. Thus, every individual SS-bot 

actively performs local and global searches using 

vibration sensation (Zhao et al., 2019).  

SS-bots do not have a full view of the environment 

(Carrillo-Zapata et al., 2020; Wignall and 

Herberstein, 2013). They cannot perceive the 

complete historic events (Melaine et al., 2020). 

Thus, SS-bots have limited perception of the 

environment (Otor et al., 2019; Talamala et al., 
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2020), emphasizing locality. This defines three 

types of vibrations (Cuevas et al., 2019), namely, 

vibration generated when SS-bots move, vibration 

by the fittest SS-bot, and vibration from the prey. 

SS-bots can distinguish between these different 

vibrations and act accordingly. The actions 

thereto are guided by the received information, 

including uncertainties and constraints (St-Onge 

et al., 2020; Navarro and Matía, 2013). 

2.4.3. SS-bot mission planning / decision making 

SS-bots decisions shape their behaviour. SS-bots 

commonly trigger such decisions based on their 

internal states (Cheraghu et al., 2021; Cuevas et 

al., 2013). One prevalent decision is to move 

(James et al., 2015 ; Cheraghu et al., 2021; Saffre 

et al., 1999; Cuevas et al., 2013). Although 

movement may be random, the choice of where to 

go is based on the predetermined goal, vibrations, 

and the shared memory (James et al., 2015). In 

addition, the gender of the SS-bot also shapes the 

walk (Cuevas et al., 2013; Zhao et al., 2021). 

Gender upholds that the female SS-bots move 

towards stronger vibrations while male SS-bots 

move towards the nearest female. Female SS-bots 

are also attracted to gender-neutral SS-bots 

(Cuevas et al., 2019). Giant female SS-bots are 

favoured because they create potent vibrations. 

However, although other factors such as curiosity 

and reproduction influence like/dislike decisions 

(Evangeline and Abirami, 2019; Otor et al., 

2019)], the final decision SS-bot choice remains 

stochastic (Cuevas et al., 2013; Zhao et al., 2019).  

2.4.4. High level operations 

A swarms should maintain a strong community to 

improve exploration. This is achieved by getting 

rid of weaker SS-bots on poor fitness grounds 

(James et al., 2015; Cuevas et al., 2013). The work 

of Zhao et al. (2019) proposed replacing wort 

members after each iteration. On the other hand, 

Cuevas et al. (2019) proposed replacement of the 

worst fit, replacing these with the offspring from 

mating best fit members of the swarm. This is an 

essential swarm level operation that binds the 

swarm together. 

2.4.5. SS-bots constraints 

The primary constraint in most swarm intelligence 

models is lack of inclusion of the time model in 

the environment. SS-bots movements are, thus, 

strictly modelled as one single time step per 

iteration regardless of the fitness value carried, 

position, or the neighbourhood thereof. It would 

be ideal to improve aspects of understandability 

and conciseness in the behaviour of SS-bots. In 

this vase, understandability suggests that a swarm 

intelligence ontology would be understood by all 

stakeholders, other ontology developers, swarm 

intelligence experts, and even swarm intelligence 

systems operators. Conciseness, on the other 

hand, means that a swarm intelligence ontology 

would consist of a minimal vocabulary to describe 

the swarm of homogeneous SS-bots. The desire to 

capture all these aspects in the context of swarms 

of spider-like robotic devices is the gap this study 

seeks to fill in the body of knowledge. 

 

3. Methods 

An SS-bot ontology can be characterized by six 

aspects. The core and central aspect is the swarm 

knowledge. In swarm knowledge, we define the 

global context of the swarm. This is where data 

about the other five aspects is synchronized. The 

environment is another key component of the SS-

bot ontology which defines the context in which 

SS-bots operate. This aspect captures data about 

the web, its boundaries, structure, the shared 

memory and any stigmergic factors for SS-bots 

during their stay on the environment.  

 

Mission planning and related parameters is 

another rich aspect of the SS-bot ontology. It 

entails the tools for SS-bot reasoning, design of 

internal state, meanings of vibrations, parameters 

that characterize neighbour SS-bots, as well as the 

triggers to stochastic SS-bot movement decisions. 

Precisely, mission planning summarizes how path 

planning and movements are driven (Cheraghu et 

al., 2021; Cuevas et al., 2013). In SS-bots mission 

planning, explicit definition of gender plays a key 

role (Cuevas et al., 2019) towards most decision-

making processes (Zhao et al., 2021).  

Another key aspect of the ontology is the SS-bot 

architecture. This aspect considers four SS-bot 

features, namely, gender, memory, sensory skills, 

and weights. In addition, SS-bots communication 

is equally important. This aspect captures the 

media of communication and the attributes of the 

medium. In this case, vibrations are characterized 

with respect to how frequency and the amplitude 

of a vibration are related to some position on the 

web, as well as how a vibration is associated with 

the gender of the SS-bot at its source. Also, the 

relationship between a vibration, weight, source, 

amplitude, distance, attenuation, and the gender of 

2022 International Conference on Intelligent and Innovative Computing Applications
ISBN: 978-99949-0-888-2

226



the SS-bot is established. The web is the medium 

through which vibrations are transmitted. 

The last aspect of an SS-bot ontology captures the 

operator and meta-knowledge of SS-bots. In this 

case, memory about the prey, as well as recalling 

the frequency of prey vibrations are key triggers 

of curiosity, mating, or following others. The 

proximity of prey overrides all other operations in 

favour of attacking the prey. Thus, most decisions 

made by SS-bots are based on the different 

vibrations it receives. 

 

4. Integration of SS-bot ontology aspects 

Figure 1 presents the six aspects of an SS-bot 

ontology. Swarm knowledge is central. This is 

where the goal of the swarm is defined (mating or 

preying). Also, this is where initialization of 

swarm population and other parameters is done, 

such as setting up gender roles, marking targets, 

and setting the conditions for achieving the goal. 

Figure 2 expands the environment aspect to depict 

its four parts: the web, its boundaries, and the 

occupants (SS-bots and prey). SS-bots cannot go 

to infeasible positions outside the web. SS-bots 

understand the structure of the web. On the other 

hand, the web creates a shared memory for the 

swarm. Both the prey and SS-bots have precise 

positions on the web. Prey generate unique 

vibrations attractive to SS-bots. Contrary, SS-bots 

generate vibrations of different intensity based on 

gender, weight, and position in the web. 

Figure 3 summarizes SS-bot mission planning, 

depicting four entities. First, an SS-bot’s internal 

state is central in this aspect. It holds the goal of 

the SS-bot, target, and the resources for achieving 

the goal. Internal states are influenced by the 

behaviour of other SS-bots in the neighbourhood, 

their gender, and other random stochastic actions 

of the neighbours. Neighbour SS-bots occupy 

precise positions on the web. They broadcast 

gender-based vibrations in different intensities. 

On one hand, male counterparts follow behind the 

female foils to mate. Only dominant male SS-bots 

can mate. Non-dominant male SS-bots are meant 

to balance the population ratio of the swarm.  

 
Figure 1. Level 0 ss-bots ontology 

 

 

Figure 2. The environment 

 

 

Figure 3. Mission planning in nanites 
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The female SS-bots exert curiosity and anxiety to 

mission planning SS-bots. Vibrations originate 

from prey or other SS-bots in the swarm. The 

decision by an SS-bot to move is, therefore, 

triggered by other SS-bots around, the vibrations 

they generate, prey, and all other mission planning 

factors such as vibration weight, intensity, source, 

and the gender of the source SS-bot.  

Two entities stand out under the communication 

aspect. These are the web and vibrations (see 

Figure 4). While the web is a communication 

medium, vibrations are the signals transmitted via 

the web. Vibrations are generated at various 

sources with specific frequencies, intensities, and 

attenuations. Sources of vibrations are the SS-bots 

or prey. These sources have specific positions on 

the web. The intensity of the vibration depends on 

the distance of the source, gender, curiosity, and 

the weight. Prey generated vibrations are stronger 

than those generated by SS-bot. Vibrations from 

nearby sources are relatively stronger than those 

from a distance.  

The architecture of an SS-bot connotes four parts 

(see Figure 5). SS-bots have memory, sensory 

abilities to detect vibrations, gender to stipulate 

the role, and weight.  

 

Figure 4. Communication knowledge 

 

 

 

 

Figure 5: SS-bot design 

A collection of operators and metadata define the 

last aspect of an SS-bot ontology. This is where 

we keep knowledge about best fit members, worst 

fit members, and their positions. Although the key 

decisions are based on the vibrations and other 

implicit metadata such as the ability of SS-bots to 

distinguish between vibrations from prey, male, 

and female SS-bots, these attributes aid decision 

making in SS-bots and in the entire swarm. Thus, 

the survival of a swarm depends on the strength of 

the community of fitter members. Eventually, 

weak members would be replaced by the offspring 

of fitter members, updating the shared memory of 

the swarm with data about fitter members.  

Between the distinct aspects of the ontology there 

is transfer of vital swarm knowledge. For 

example, vibrations are shared through the web to 

be used by SS-bots to generate knowledge that 

influence decision making and internal state. The 

ability of SS-bots to distinguish vibrations from 

the prey from those from other SS-bots change 

SS-bots’ features in every movement step (such as 

weight, position, curiosity, anxiety).  

 

5. Conclusion 

We have formalized the representation of SS-bots 

knowledge in the form of an ontology. Unfolding 

the elements of such an ontology together with the 

entities and relations associated with such swarms 

is essential for providing a detailed modelling 

space that can be applied to other swarm 

intelligence contexts. In fact, explaining this goal-

orientated ontology and presenting its design can 

propel related application-specific modelling.  

5.1. Contributions 

Three contributions characterize this study as 

follows: 

• The paper presented a formal understanding of 

the key entities key in the design of an SS-bot 

ontology. This literature extends content. 

• This work gives a baseline upon which other 

studies aimed at understanding knowledge 

representation in other swarm contexts will be 

built. Representing swarm knowledge in the 

form of an ontology creates the building blocks 

for heterogeneous swarm ontologies.  

• Although the focus was on understanding the 

elements of an ontology for coordinating 

homogeneous SS-bots, the work presents a 

new method for describing swarm systems.  
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5.2. Future Work 

Four ambitious directions for future work noted as 

follows: 

• An experiment to corroborate this knowledge 

representation approach is pending.  

• The SS-bot ontology could be extended by 

incorporating applicable knowledge domain to 

cover certain use cases. Precisely, the SS-bot 

ontology should be assessed further for 

applicability, extensibility, and expandability. 

• Integrating the SS-bot ontology with other 

swarm intelligence ontologies to, eventually, 

create a heterogeneity is pending. 

• More knowledge domains can be considered 

for the SS-bot ontology to include mission 

planning under uncertainty, dealing with 

incomplete data, managing vague, inaccurate, 

inconsistent, and imprecise situations. 
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